
Pricing Asian Options Using Monte Carlo

Joy Tolia

1

Contents

1 Introduction 2
1.1 Implementation . 3
1.2 Types of Errors . 3
1.3 Error Analysis . 3

2 Model Error 4
2.1 Implementation . 4
2.2 Results . 5
2.3 Conclusion . 5

3 Rate of Convergence 6
3.1 Implementation . 7
3.2 Results . 7
3.3 Conclusion . 8

4 Size of Timestep δt 8
4.1 Implementation . 8
4.2 Results . 9
4.3 Conclusion . 9

5 Multi Level Monte-Carlo 9
5.1 Methodology . 9
5.2 Implementation . 10
5.3 Results & Conclusion . 11

6 Appendix 12
6.1 Underlying Model . 12
6.2 Model Error Results . 14
6.3 Rate of Convergence Results . 18

6.3.1 Arithmetic - Fixed Strike . 18
6.3.2 Arithmetic - Floating Strike . 19
6.3.3 Geometric - Fixed Strike . 19
6.3.4 Geometric - Floating Strike . 20

6.4 Code . 20
6.4.1 Model Error Code . 20
6.4.2 Rate of Convergence Code . 23
6.4.3 Size of Timestep δt Code . 27
6.4.4 Multi Level Monte-Carlo . 29

2

1 Introduction

• The objective of this assignment is to implement Monte-Carlo methods within Matlab to
price different Asian options and to compare the different results.

• I chose Matlab as I have used it before and I thought it would be interesting to find out how
Monte-Carlo will behave in Matlab.

1.1 Implementation

• Matlab is very fast at doing array operations, much faster than using for loops. So I wanted
to find a way to have as much of my implementation as possible using array operations.

• The problem becomes memory. I found that the computer could only handle arrays with 107

elements at once.

• First the decide the size δt and anything to do with averaging across time will be done with
array operations. Then using the information about my computer and its memory restrictions,
I would do the averaging across samples in chunks. For examples if δt = 10−2 then I would
choose 105 for the number of samples in each chunk to average over.

• By doing this I am hoping to get the most of out Matlab in terms of speed.

1.2 Types of Errors

• There are 3 types of errors we would like to analyse; error from approximating the underlying
model, error from averaging over samples and error from size of the timestep δt.

• We will get error from approximating the underlying model as we will be comparing Euler-
Maruyama and Milstein schemes. Note that for our underlying model we do have a closed
form formula:

St+δt = Ste
(r−σ2/2)δt+σφ

√
δt, φ ∼ N (0, 1)

However, it will not always be the case where we will find a closed form solution for the
underlying.

• We will get error from averaging over samples which is the main error in Monte-Carlo methods
and will be looking at the antithetics scheme to see how they affect the number of samples
needed to get an accurate answer.

• We will assume we want to price continuous Asian options hence our δt→ 0, however we will
have to take δt > 0 for example δt = 0.01 which will give us an error from averaging over
time.

1.3 Error Analysis

• Having spent quite a while trying to work out the best way to present results, the hardest
part was to assume we didn’t have exact solutions and to have a way to working out if the
solution converged or not.

3

• We use the following method to check if a solution has converged; we keep getting chunks of
new samples and keeping track of the running average. we say a solution is reached once the
standard deviation of the last 1000 elements of the running average is within some tolerance
ε. we will use ε = 10−5.

2 Model Error

In this section, we will look at the error that we will get from approximating the underlying model,
as we have the closed form formula in this case, we can compare that to the approximations. Let
φ ∼ N (0, 1), then we have the following iterative formula that we can implement:

St+δt = Ste
(r−σ2/2)δt+σφ

√
δt (1)

St+δt = St + rStδt+ σStφ
√
δt (2)

St+δt = St + rStδt+ σStφ
√
δt+

σ2St
2

(
φ2 − 1

)
δt (3)

Where Equation (1) is the closed form solution, Equation (2) is the Euler-Maruyama approximation
and Equation (3) is the Milstein approximation. More information on the derivations on each of
the formula can be found is Section 6.1. Let us expand the closed form solution to be able to
compare it with the approximations:

St+δt = Ste
(r−σ2/2)δt+σφ

√
δt

= St

(
1 +

(
r − σ2

2

)
δt+ σφ

√
δt+

σ2

2
φ2δt+O

(
δt3/2

))
= St + rStδt+ σStφ

√
δt︸ ︷︷ ︸

Euler-Maruyama approximation

+
σ2St

2

(
φ2 − 1

)
δt︸ ︷︷ ︸

Miltstein correction

+O
(
δt3/2

)

From the previous calculation we can see intuitively that the Euler-Maruyama has an order of
convergence of

√
δt and that the Milstein approximation has this extra correction term which gives

it an order of convergence of δt which is better than the Euler-Maruyama approximation. Let us
now test this.

At first I thought I could distinguish between error from the size of the time step and error from
approximating the model however, we both affect each other so I have to analyse them together.

2.1 Implementation

• We will run all three method together so we will be using the same samples for each method
to make them fully comparable.

• As described earlier, we will define the error for convergence as the standard deviation of the
last 100 running averages and we will say the solution has converged where the error is below
10−3.

4

• In this case, we will take the maximum standard deviation of all three methods so each
method will have the same number of samples in the end.

• All the code used in this section can be found in Section 1 within the Code document.

• We define the error for the different methods as the absolute difference between the converged
solution of Euler-Maruyama (Equation (2)) and Milstein (Equation (3)) method versus the
benchmark case of the closed form (Equation (1)).

2.2 Results

The full set of results for each option can be found in Section 6.2. The following are the results for
the arithmetic fixed strike Asian call and put options:

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0088 5.6402×10−4 2.9598×10−4 4.3800×10−5 3.3715×10−5

Milstein 0.0233 0.0026 2.5500×10−4 2.5847×10−5 2.5360×10−6

Table 1: Error from the benchmark closed form solution for the arithmetic fixed strike Asian call
option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 3.3435×10−4 9.5593×10−4 1.1241×10−4 6.3920×10−5 3.7049×10−5

Milstein 0.0184 0.0019 1.9486×10−4 1.9174×10−5 1.9412×10−6

Table 2: Error from the benchmark closed form solution for the arithmetic fixed strike Asian put
option

Figure 1: Error from the benchmark closed form
solution for the arithmetic fixed strike Asian call
option

Figure 2: Error from the benchmark closed form
solution for the arithmetic fixed strike Asian put
option

5

2.3 Conclusion

• The error we talk about in this part is the error of Euler-Maruyama (Equation (2)) and
Milstein (Equation (3)) methods versus the benchmark case which is the closed form method
(Equation (1)).

• The results for each options are fairly similar which means the conclusion is robust.

• We find that with the Milstein method the error reduces linearly with size of the timestep δt
as seen from the straight lines in the error plots (Figures 1 and 2). This is what we found at
the start of the section with Milstein having an order of convergence of δt.

• We find that the Euler-Maruyama method is a bit less predictive and it was hard to say how
it changes with the size of the timestep δt.

• The interesting result is that Euler-Maruyama method has smaller error until δt = 10−3 then
the Milstein method but then the Milstein method has smaller error past that point as seen
in Figure 1.

• The conclusion from this is that if you are using δt < 10−3 then to use the Euler-Maruyama
method and for δt > 10−3 then to use the Milstein Method.

3 Rate of Convergence

In this section we will use the antithetics method and compare that to the regular Monte-Carlo.
Antithetics leverages on the fact that a standard normal random variable X is symmetric which
means we have for a payoff function f , we have E [f (X)] = E [f (−X)] hence we can use the
following:

E [f (X)] = E
[
f (X) + f (−X)

2

]
This means that given one standard normal sample, we can use it twice by taking the negative
of that sample. But what would be interesting is that if this would mean if we would converge
double the rate as in essence we have double the samples. Looking at the variance of the antithetics
method we have the following:

V
[
f (X) + f (−X)

2

]
=

1

4
(V [f (X)] + V [f (−X)] + 2Cov [f (X) , f (−X)])

=
1

2
(V [f (X)] + ρV [f (X)])

=
1

2
V [f (X)] (1 + ρ)

Where ρ is the correlation between f (X) and f (−X). This means that the variance of antithetics
is only lower than the standard Monte-Carlo method when the correlation is negative.

In our case, the correlation will be negative as a negative sample usually means the lower simulated
path hence the payoff is lower whereas a positive sample means higher simulated path hence a

6

higher payoff.

We have calculated the correlations between the payoffs from samples and their negative equivalents
for 104 samples with δt = 10−3 to get an understanding:

Call Put
Arith Geom Arith Geom

Fix Float Fix Float Fix Float Fix Float

ρ -0.52 -0.48 -0.51 -0.47 -0.41 -0.44 -0.41 -0.43

Table 3: Correlations between the payoffs of 10−4 samples and their negative equivalents with
δt = 10−3

From this we can see that the call options has a more negative correlation than the put options.
So we should see that the call options should converge faster than the put options. Also no note
that as ρ ≈ −0.5, we would have quartered the variance hence halved the standard deviation for
these options.

3.1 Implementation

• We will use the same definition of convergence error as before but we will use the standard
deviation of the last 1000 running averages from Monte Carlo. We say that we have converged
to a solution when this error is less than 10−4.

• We will keep the size of the timestep δt constant at 10−3 as we are analysing the rate of
convergence more than the accuracy of the results.

• We will use the Milstein method to model the underlying.

• All the code used in this section can be found in Section 2 within the Code document.

3.2 Results

The full set of results can be found in Section 6.3. Here are the results for the arithmetic fixed
strike Asian options:

Call Put

Standard Antithetic Standard Antithetic

Final Value 5.7616 5.7654 3.3468 3.3462

Final Error (×10−6) 9.9 7.7 9.7 8.2

Samples (×105) 42.4 15.2 30.4 12.8

Time (seconds) 253 154 124 91

Table 4: Data for the arithmetic fixed strike Asian options

7

Figure 3: Convergence error measure for the
arithmetic fixed strike Asian call option

Figure 4: Convergence error measure for the
arithmetic fixed strike Asian put option

3.3 Conclusion

• We find similar results across all options which again shows that we can interpret our results
with confidence.

• We see that the antithetics method works very well from our results, as seen in Figures 3 and
4.

• We see that the number of samples needed to achieve convergence have more than halved as
expected as seen in Table 4.

• We also find that the antithetics method works slightly better on call options than the put
options as hypothesised earlier.

4 Size of Timestep δt

In this section, we will analyse how the size of the timestep affects accuracy of the results.

4.1 Implementation

• We will use the closed form solution for the underlying as we want to get rid of the error from
approximating the underlying.

• We will only work with one option in this case which is the geometric fixed strike Asian call
option and assume that the exact solution is 5.5468 which is from [1].

• Once the solution has converged, we will compared the converged solution with the exact
solution and look at the absolute difference between the two and use that as our error.

• All the code for this part can be found in Section 3 of the code document.

8

4.2 Results

Figure 5: Error of converged solution versus the exact solution for different timesteps

4.3 Conclusion

• Having run this several times and getting results similar to Figure 5, we conclude that the
results are weak and hard to interpret.

• We would have expected the error to reduce as δt went down. However, the error from Monte-
Carlo of using random samples might outweigh the error from the timestep δt making it hard
to see the affect of δt on the accuracy of the results.

5 Multi Level Monte-Carlo

In summer 2015, I did a research project under a supervisor where we will looking at calculating
values for stochastic integrals. One of the papers I came across was [2] on Multi Level Monte-Carlo
which looked very interesting as it has a lower computational complexity than the standard Monte-
Carlo but I never got to implement it. I have taken the chance in this assignment to implement
the algorithm.

5.1 Methodology

Consider Monte Carlo path simulations with different timesteps hl = M−lT , l = 0, 1, . . . , L. Let
P denote the discounted risk neutral payoff and P̂l denote approximations of P using a numerical
discretisation with timestep hl. We have:

E
[
P̂L

]
= E

[
P̂0

]
+

L∑
l=1

E
[
P̂l − P̂l−1

]

9

Let Ŷ0 be the estimator for E
[
P̂0

]
using N0 samples and Ŷl, for l > 0, be the estimator for

E
[
P̂l − P̂l−1

]
using Nl samples. For us it is:

Ŷ0 =
1

N0

N0∑
i=1

P̂
(i)
0

Ŷl =
1

Nl

Nl∑
i=1

(
P̂

(i)
l − P̂

(i)
l−1

)
, l > 0

The key point here is that the quantity P̂
(i)
l − P̂

(i)
l−1 comes from two discrete approx-

imations with different timesteps but the same Brownian motion which reduces the
variance. This is easily implemented by first constructing the Brownian increments for the simu-

lation of the discrete path leading to the evaluation of P̂
(i)
l and then summing them in groups of

M to give discrete Brownian increments for the evaluation of P̂
(i)
l−1.

5.2 Implementation

The following is the algorithm we will follow completely based from [2] where: The equation for
the optimal Nl is:

Nl =

⌈
2ε−2

√
Vlhl

(
k∑
l=0

√
Vk
hk

)⌉
(4)

Where ε is a user defined level of accuracy and Vl is the variance of
(
P̂

(i)
0

)
i≤Nl

for l = 0 and(
P̂

(i)
l − P̂

(i)
l−1

)
i≤Nl

for l > 0.

Step 1. Start with L = 0.
Step 2. Estimate VL using an initial set of NL = 104 samples.
Step 3. Define the optimal Nl, l = 0, . . . , L, using Equation (4).
Step 4. Evaluate extra sample at each level as needed fo new Nl.
Step 5. If L ≥ 2, test for convergence using Equation (11) from [2].
Step 6. If L < 2 or it is not converged, set L := L+ 1 and go to Step 2.

• We define convergence as shown in Equation (11) from [2].

• In this part, we use the close form solution for the underlying model.

• All the code can be seen in Section 4 of the code document.

10

5.3 Results & Conclusion

Figure 6: Value from Multi Level Monte-Carlo with increasing levels

• The code ran in less than two seconds due to the vectorisation from Matlab and as the
algorithm works well.

• Accuracy was set to ε = 0.01 which is fairly low. Even though Figure 6 shows very good
convergence, that was for only one run, there is still error (as expected) from different runs.

• One problem currently is when ε is increased, my computer cannot handle the sizes of ar-
rays produced in the algorithm which can be tackled by using for loops rather than array
operations. However, speed will be lost in doing so.

• As each level greater than 0 is a difference between two discretisations, the variance is lower
because both discretisation uses the same Brownian paths, making this the principal reason
that it is better than the standard Monte-Carlo.

11

6 Appendix

6.1 Underlying Model

The following is the stochastic process that we assume the underlying asset follows in a risk neutral
world:

dSt = rStdt+ σStdWt

where r, σ ∈ R and Wt = (Wt : t > 0) is a standard Brownian motion. In this case, we have a closed
form solution for the St+δt. We get this by using Ito’s lemma on log (St):

d (log (St)) =
∂

∂t
(log (St)) dt+

∂

∂St
(log (St)) dSt +

1

2

∂2

∂S2
t

(log (St)) dS
2
t

=
1

St
(rStdt+ σStdWt)−

1

2S2
t

σ2S2
t dt

=

(
r − σ2

2

)
dt+ σdWt

Using the integral equivalent over a timestep δt of the above relation gives the following equation:

log (St+δt)− log (St) =

(
r − σ2

2

)
δt+ σ (Wt+δt −Wt)

Finally as (Wt+δt −Wt) ∼ N (0, δt), letting φ ∼ N (0, 1), we have the following:

St+δt = St exp

((
r − σ2

2

)
δt+ σφ

√
δt

)
(5)

This is what we would like to implement for the underlying model if we were pricing using Monte-
Carlo methods. However, this could be computationally costly due to the exponential function and
the model could be more complex and might not have a closed form solution so there are other
schemes that we can use. Let us start with a more general model:

dSt = a (St, t) dt+ b (St, t) dWt

Now using the integral equivalence of the above formula:

St+δt = St +

∫ t+δt

t
a (Ss, s) ds+

∫ t+δt

t
b (Ss, s) dWs (6)

Using Ito’s for a (Ss, s) and b (Ss, s), we have the following:

a (Ss, s) = a (St, t) +

∫ s

t

(
∂a

∂u
(Su, u) + a (Su, u)

∂a

∂Su
(Su, u) +

1

2
b2 (Su, u)

∂2a

∂S2
u

(Su, u)

)
du+ · · ·

· · ·+
∫ s

t
b (Su, u)

∂a

∂Su
(Su, u) dWu

Similarly:

12

b (Ss, s) = b (St, t) +

∫ s

t

(
∂b

∂u
(Su, u) + a (Su, u)

∂b

∂Su
(Su, u) +

1

2
b2 (Su, u)

∂2b

∂S2
u

(Su, u)

)
du+ · · ·

· · ·+
∫ s

t
b (Su, u)

∂b

∂Su
(Su, u) dWu

Now we can sub in a (Su, u) = rSu and b (Su, u) = σSu to get the following:

∂a

∂u
(Su, u) = 0,

∂a

∂Su
(Su, u) = r,

∂2a

∂S2
u

(Su, u) = 0

∂b

∂u
(Su, u) = 0,

∂b

∂Su
(Su, u) = σ,

∂2b

∂S2
u

(Su, u) = 0

Therefore we get:

a (Ss, s) = rSt +

∫ s

t
r2Sudu+

∫ s

t
rσSudWu

b (Ss, s) = σSt +

∫ s

t
rσSudu+

∫ s

t
σ2SudWu

Finally subbing the above equation into Equation (6):

St+δt = St +

∫ t+δt

t
a (Ss, s) ds+

∫ t+δt

t
b (Ss, s) dWs

= St +

∫ t+δt

t

(
rSt +

∫ s

t
r2Sudu+

∫ s

t
rσSudWu

)
ds+ · · ·

· · ·+
∫ t+δt

t

(
σSt +

∫ s

t
rσSudu+

∫ s

t
σ2SudWu

)
dWs

= St + rStδt+ σSt (Wt+δt −Wt) + · · ·

· · ·+
∫ t+δt

t

∫ s

t
r2Su duds︸ ︷︷ ︸

O(δt2)

+

∫ t+δt

t

∫ s

t
rσSu dWuds︸ ︷︷ ︸

O(δt3/2)

+ · · ·

· · ·+
∫ t+δt

t

∫ s

t
rσSu dudWs︸ ︷︷ ︸

O(δt3/2)

+
¯

∫ t+δt

t

∫ s

t
σ2Su dWudWs︸ ︷︷ ︸

O(δt)

= St + rStδt+ σSt (Wt+δt −Wt) + σ2
∫ t+δt

t

∫ s

t
SudWudWs +O

(
δt3/2

)
Let focus on the integral from above:

13

σ2
∫ t+δt

t

∫ s

t
SudWudWs = σ2

∫ t+δt

t
St (Ws −Wt) dWs +O (δt)

= σ2St

∫ t+δt

t
WsdWs︸ ︷︷ ︸

Using Ito’s =(W 2
t+δt−W

2
t −δt)/2

−σ2StWt (Wt+δt −Wt) +O (δt)

=
σ2St

2

(
W 2
t+δt −W 2

t − δt+ 2W 2
t − 2Wt+δtWt

)
+O (δt)

=
σ2St

2

(
(Wt+δt −Wt)

2 − δt
)

+O (δt)

Therefore we have:

St+δt = St + rStδt+ σSt (Wt+δt −Wt) +
σ2St

2

(
(Wt+δt −Wt)

2 − δt
)

+O (δt)

Let φ ∼ N (0, 1) then:

St+δt ≈ St + rStδt+ σStφ
√
δt+

σ2St
2

((
φ
√
δt
)2
− δt

)
= St + rStδt+ σStφ

√
δt︸ ︷︷ ︸

Euler-Maruyama approximation

+
σ2St

2

(
φ2 − 1

)
δt︸ ︷︷ ︸

Milstein Correction

6.2 Model Error Results

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0088 5.6402×10−4 2.9598×10−4 4.3800×10−5 3.3715×10−5

Milstein 0.0233 0.0026 2.5500×10−4 2.5847×10−5 2.5360×10−6

Table 5: Error from the benchmark closed form solution for the arithmetic fixed strike Asian call
option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 3.3435×10−4 9.5593×10−4 1.1241×10−4 6.3920×10−5 3.7049×10−5

Milstein 0.0184 0.0019 1.9486×10−4 1.9174×10−5 1.9412×10−6

Table 6: Error from the benchmark closed form solution for the arithmetic fixed strike Asian put
option

14

Figure 7: Error from the benchmark closed form
solution for the arithmetic fixed strike Asian call
option

Figure 8: Error from the benchmark closed form
solution for the arithmetic fixed strike Asian put
option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0042 1.1359×10−4 6.9972×10−4 7.7009×10−5 6.5832×10−5

Milstein 0.0254 0.0026 2.6492×10−4 2.6019×10−5 2.5930×10−6

Table 7: Error from the benchmark closed form solution for the arithmetic floating strike Asian
call option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0024 0.0012 5.6068×10−4 1.8113×10−5 4.9870×10−5

Milstein 0.0193 0.0020 1.9384×10−4 1.9620×10−5 1.9405×10−6

Table 8: Error from the benchmark closed form solution for the arithmetic floating strike Asian
put option

15

Figure 9: Error from the benchmark closed form
solution for the arithmetic floating strike Asian
call option

Figure 10: Error from the benchmark closed
form solution for the arithmetic floating strike
Asian put option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0045 0.0014 2.8011×10−4 8.6369×10−5 1.9019×10−5

Milstein 0.0227 0.0023 2.3528×10−4 2.3503×10−5 2.3423×10−6

Table 9: Error from the benchmark closed form solution for the geometric fixed strike Asian call
option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 9.2513×10−5 0.0014 2.2584×10−4 7.5734×10−5 8.7579×10−6

Milstein 0.0197 0.0021 2.0697×10−4 2.0652×10−5 2.0156×10−6

Table 10: Error from the benchmark closed form solution for the geometric fixed strike Asian put
option

16

Figure 11: Error from the benchmark closed
form solution for the geometric fixed strike
Asian call option

Figure 12: Error from the benchmark closed
form solution for the geometric fixed strike
Asian put option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0070 1.1555×10−4 7.4598×10−5 2.5574×10−5 1.7367×10−5

Milstein 0.0276 0.0028 2.8532×10−4 2.8003×10−5 2.8098×10−6

Table 11: Error from the benchmark closed form solution for the geometric floating strike Asian
call option

δt
10−1 10−2 10−3 10−4 10−5

Euler-Maruyama 0.0020 3.4913×10−4 7.7019×10−4 8.1794×10−5 3.4532×10−6

Milstein 0.0171 0.0018 1.8251×10−4 1.8463×10−5 1.8594×10−6

Table 12: Error from the benchmark closed form solution for the geometric floating strike Asian
put option

17

Figure 13: Error from the benchmark closed
form solution for the geometric floating strike
Asian call option

Figure 14: Error from the benchmark closed
form solution for the geometric floating strike
Asian put option

6.3 Rate of Convergence Results

6.3.1 Arithmetic - Fixed Strike

Call Put

Standard Antithetic Standard Antithetic

Final Value 5.7616 5.7654 3.3468 3.3462

Final Error (×10−6) 9.9 7.7 9.7 8.2

Samples (×105) 42.4 15.2 30.4 12.8

Time (seconds) 253 154 124 91

Table 13: Data for the arithmetic fixed strike Asian options

Figure 15: Convergence error measure for the
arithmetic fixed strike Asian call option

Figure 16: Convergence error measure for the
arithmetic fixed strike Asian put option

18

6.3.2 Arithmetic - Floating Strike

Call Put

Standard Antithetic Standard Antithetic

Final Value 5.8630 5.8589 3.4035 3.4027

Final Error (×10−6) 8.9 9.9 9.9 9.6

Samples (×105) 46.9 18.4 26.8 13.1

Time (seconds) 152 124 141 118

Table 14: Data for the arithmetic floating strike Asian options

Figure 17: Convergence error measure for the
arithmetic floating strike Asian call option

Figure 18: Convergence error measure for the
arithmetic floating strike Asian put option

6.3.3 Geometric - Fixed Strike

Call Put

Standard Antithetic Standard Antithetic

Final Value 5.5445 5.5427 3.4652 3.4639

Final Error (×10−6) 9.9 9.8 9.8 5.7

Samples (×105) 35.5 17.9 24.2 14.2

Time (seconds) 271 243 149 149

Table 15: Data for the geometric fixed strike Asian options

19

Figure 19: Convergence error measure for the
geometric fixed strike Asian call option

Figure 20: Convergence error measure for the
geometric fixed strike Asian put option

6.3.4 Geometric - Floating Strike

Call Put

Standard Antithetic Standard Antithetic

Final Value 6.0729 6.0752 3.2790 3.2762

Final Error (×10−6) 9.1 9.2 9.8 9.9

Samples (×105) 48.8 16.1 35.9 12.5

Time (seconds) 345 215 182 148

Table 16: Data for the geometric floating strike Asian options

Figure 21: Convergence error measure for the
geometric floating strike Asian call option

Figure 22: Convergence error measure for the
geometric floating strike Asian put option

6.4 Code

6.4.1 Model Error Code

The following is the main script for the analysis:

20

1 % Data inputs
2 T = 1;
3 t = 0;
4 S0 = 100;
5 r = 0.05;
6 K = 100;
7 sigma = 0.2;
8

9 % Accuracy Inputs
10 dt = [1e−1 1e−2 1e−3 1e−4 1e−5];
11 numSamples = 1e2;
12 randseed = rng;
13 eps = 1e−3;
14

15 allError = zeros(2,length(dt));
16 allTime = zeros(1,length(dt));
17

18 % Loop through each timestep and calculate error
19 for i = 1:length(dt)
20 disp(['dt = ' num2str(dt(i))]);
21 tic;
22 [currentValue,currentSamples,errArray,sampleArray] =...
23 modelMonteCarlo(dt(i),t,T,r,sigma,S0,K,randseed,eps,numSamples);
24 allTime(i) = toc;
25 allError(1,i) = abs(currentValue(1)−currentValue(2));
26 allError(2,i) = abs(currentValue(1)−currentValue(3));
27 disp(currentSamples);
28 end
29

30 %% Plotting
31 figHandle = figure;
32 set(figHandle,'Position',[20,20,1000,600])
33

34 loglog(dt,allError(1,:),'−o',dt,allError(2,:),'−o');
35

36

37 title('Geometric Floating Strike Asian Put Option')
38 legend('Euler−Maruyama','Milstein')
39 xlabel('Size of timestep \delta t')
40 ylabel('Measure of Error')
41 hold on;
42

43 set(findall(figHandle,'−property','FontSize'),'FontSize',18)

The following is a function which runs the Monte-Carlo methods:

1 function [currentValue,currentSamples,errArray,sampleArray] =...
2 modelMonteCarlo(dt, t, T, r, sigma, S0, K, randseed, eps ,numSamples)
3 % Get the number of time periods needed
4 numTimes = round((T−t)/dt) + 1;
5 err = 100;
6 rng(randseed);
7 % Initialise arrays to hold information
8 errArray1 = [];sampleArray1 = [];currentValue1 = 0;currentSamples1 = 0;

21

9 errArray2 = [];sampleArray2 = [];currentValue2 = 0;currentSamples2 = 0;
10 errArray3 = [];sampleArray3 = [];currentValue3 = 0;currentSamples3 = 0;
11 while err > eps
12 % normal random samples
13 phi = randn(numSamples,numTimes−1);
14 % Use different formula to get each path
15 % Closed form
16 phi1 = exp((r−0.5*sigmaˆ2)*dt + sigma*phi*sqrt(dt));
17 % Euler−Maruyama
18 phi2 = 1 + r*dt + sigma*phi*sqrt(dt);
19 % Milstein
20 phi3 = 1 + (r+0.5*sigmaˆ2*(phi.ˆ2−1))*dt + sigma*phi*sqrt(dt);
21 % Get paths for each formula
22 S1 = S0*ones(numSamples,numTimes);
23 S1(:,2:end) = S1(:,2:end).*cumprod(phi1,2);
24 S2 = S0*ones(numSamples,numTimes);
25 S2(:,2:end) = S2(:,2:end).*cumprod(phi2,2);
26 S3 = S0*ones(numSamples,numTimes);
27 S3(:,2:end) = S3(:,2:end).*cumprod(phi3,2);
28 % Get values at the end of each path
29 ST1 = S1(:,end);
30 ST2 = S2(:,end);
31 ST3 = S3(:,end);
32 % Decide if arithmetic or geometric
33 % S1 = mean(S1,2);
34 % S2 = mean(S2,2);
35 % S3 = mean(S3,2);
36 S1 = exp(mean(log(S1),2));
37 S2 = exp(mean(log(S2),2));
38 S3 = exp(mean(log(S3),2));
39 % Calculate the payoff and the error in the last 100 terms
40 [err1,currentValue1,currentSamples1] = checkError(S1,ST1,K,r,T,t,...
41 currentSamples1,currentValue1,numSamples);
42 errArray1 = [errArray1 err1];
43 sampleArray1 = [sampleArray1 currentSamples1];
44 [err2,currentValue2,currentSamples2] = checkError(S2,ST2,K,r,T,t,...
45 currentSamples2,currentValue2,numSamples);
46 errArray2 = [errArray2 err2];
47 sampleArray2 = [sampleArray2 currentSamples2];
48 [err3,currentValue3,currentSamples3] = checkError(S3,ST3,K,r,T,t,...
49 currentSamples3,currentValue3,numSamples);
50 errArray3 = [errArray3 err3];
51 sampleArray3 = [sampleArray3 currentSamples3];
52 % Get the maximum error
53 err = max([err1,err2,err3]);
54 end
55 % Store all the data
56 currentSamples = [currentSamples1,currentSamples2,currentSamples3];
57 currentValue = [currentValue1, currentValue2, currentValue3];
58 errArray = [errArray1', errArray2', errArray3'];
59 sampleArray = [sampleArray1', sampleArray2', sampleArray3'];
60

61 end

The following is a function which calculates the running average from the new samples and gets
the convergence error:

22

1 function [err,currentValue,currentSamples] =...
2 checkError(S,ST,K,r,T,t,currentSamples,currentValue,numSamples)
3 % Check if this is the first calculation or not
4 if currentSamples == 0
5 arraySamples = (currentSamples+1:currentSamples+numSamples)';
6 payoffValue = exp(−r*(T−t))*optionPayoff(S,ST,K);
7 else
8 arraySamples = (currentSamples:currentSamples+numSamples)';
9 payoffValue = [currentSamples*currentValue;...

10 exp(−r*(T−t))*optionPayoff(S,ST,K)];
11 end
12 % Calculate the cumulative mean
13 meanValue = cumsum(payoffValue)./arraySamples;
14 % Calculate the latest average
15 currentValue = meanValue(end);
16 currentSamples = currentSamples+numSamples;
17 % Calculate the standard deviation of the last 1e3 averages
18 err = std(meanValue(end−min(1e3,numSamples−1):end));
19 end

The following is a function which calculate the payoff at maturity:

1 function [P] = optionPayoff(S, ST, K)
2 % Payoff of the fixed strike call option
3 P = max(S−K,0);
4 % Payoff of the fixed strike put option
5 % P = max(K−S,0);
6 % Payoff of the floating strike call option
7 % P = max(ST−S,0);
8 % Payoff of the floating strike put option
9 % P = max(S−ST,0);

10 end

6.4.2 Rate of Convergence Code

The following is the main script for the analysis:

1 % Data inputs
2 T = 1;
3 t = 0;
4 S0 = 100;
5 r = 0.05;
6 K = 100;
7 sigma = 0.2;
8 % Accuracy Inputs
9 dt = 1e−3;

10 randseed = rng;
11 % Run the standard Monte−Carlo
12 tic;
13 [standardCurrentValue,standardCurrentSamples,...
14 standardErrArray,standardSampleArray] =...
15 standardModelMonteCarlo(dt,t,T,r,sigma,S0,K,randseed);

23

16 standardTime = toc;
17 % Run the antithetics Monte−Carlo
18 tic;
19 [antitheticCurrentValue,antitheticCurrentSamples,...
20 antitheticErrArray,antitheticSampleArray] =...
21 antitheticStandardModelMonteCarlo(dt,t,T,r,sigma,S0,K,randseed);
22 antitheticTime = toc;
23 %% Store Data
24 allData = zeros(4,2);
25 allData(:,1) = [standardCurrentValue;standardErrArray(end);...
26 standardCurrentSamples;standardTime];
27 allData(:,2) = [antitheticCurrentValue;antitheticErrArray(end);...
28 antitheticCurrentSamples;antitheticTime];
29 %% Plotting
30 figHandle = figure;
31 set(figHandle,'Position',[20,20,1000,600])
32 loglog(standardSampleArray,standardErrArray,'−o',antitheticSampleArray,...
33 antitheticErrArray,'−o');
34 title('Arithmetic Floating Strike Asian Put Option')
35 legend('Standard','Antithetic')
36 xlabel('Number of Samples')
37 ylabel('Measure of Error')
38 hold on;
39 set(findall(figHandle,'−property','FontSize'),'FontSize',18)

The following is a function which runs the standard Monte-Carlo method:

1 function [currentValue,currentSamples,errArray,sampleArray] = ...
2 standardModelMonteCarlo(dt,t,T,r,sigma,S0,K,randseed)
3 % Get the number of time periods needed
4 numTimes = (T−t)/dt + 1;
5 % Check is its an integer
6 if rem(numTimes,1) ˜= 0
7 error('dt does not divide (T−t)');
8 end
9 % Initialise variables

10 numSamples = 1e4;
11 currentValue = 0;
12 currentSamples = 0;
13 % Accurancy for the convergence
14 eps = 1e−5;
15 % Random seed
16 rng(randseed);
17 err = 100;
18 errArray = [];
19 sampleArray = [];
20 % Run the while loop until convergence reached
21 while err > eps
22 % Get normal random samples
23 phi = randn(numSamples,numTimes−1);
24 % Get the Milstein method to calculate paths for the underlying
25 phi = 1 + r*dt + phi*sqrt(dt)*sigma + 0.5*sigmaˆ2*(phi.ˆ2−1)*dt;
26 % Calculate the paths of the underlying
27 S = S0*ones(numSamples,numTimes);
28 S(:,2:end) = S(:,2:end).*cumprod(phi,2);

24

29 % Calculate the end of each path
30 ST = S(:,end);
31 % Arithmetic or geometric sampling
32 S = mean(S,2);
33 % S = exp(mean(log(S),2));
34 % Put everything together and check error
35 [err,currentValue,currentSamples] =...
36 checkError(S,ST,K,r,T,t,currentSamples,currentValue,numSamples);
37 errArray = [errArray err];
38 sampleArray = [sampleArray currentSamples];
39 end
40 end

The following is a function which runs the antithetic Monte-Carlo method:

1 function [currentValue,currentSamples,errArray,sampleArray] = ...
2 antitheticStandardModelMonteCarlo(dt,t,T,r,sigma,S0,K,randseed)
3 % Get the number of time periods needed
4 numTimes = (T−t)/dt + 1;
5 % Check is its an integer
6 if rem(numTimes,1) ˜= 0
7 error('dt does not divide (T−t)');
8 end
9 % Initialise variables

10 numSamples = 1e4;
11 currentValue = 0;
12 currentSamples = 0;
13 % Accurancy for the convergence
14 eps = 1e−5;
15 % Random seed
16 rng(randseed);
17 err = 100;
18 errArray = [];
19 sampleArray = [];
20 % Run the while loop until convergence reached
21 while err > eps
22 % Get normal random samples
23 phi = randn(numSamples,numTimes−1);
24 % Adjust for calculate paths for the underlying using Milstein for
25 % both positive and negative phi
26 phiPos = 1 + r*dt + phi*sqrt(dt)*sigma + 0.5*sigmaˆ2*(phi.ˆ2−1)*dt;
27 phiNeg = 1 + r*dt − phi*sqrt(dt)*sigma + 0.5*sigmaˆ2*(phi.ˆ2−1)*dt;
28 % Calculate the paths of the underlying
29 SPos = S0*ones(numSamples,numTimes);
30 SPos(:,2:end) = SPos(:,2:end).*cumprod(phiPos,2);
31 SNeg = S0*ones(numSamples,numTimes);
32 SNeg(:,2:end) = SNeg(:,2:end).*cumprod(phiNeg,2);
33 % Calculate the end of each path
34 ST = zeros(2*numSamples,1);
35 ST(1:2:2*numSamples−1) = SPos(:,end);
36 ST(2:2:2*numSamples) = SNeg(:,end);
37 % Arithmetic or geometric sampling
38 SPos = mean(SPos,2);
39 SNeg = mean(SNeg,2);
40 % SPos = exp(mean(log(SPos),2));

25

41 % SNeg = exp(mean(log(SNeg),2));
42 % Put everything together and check error
43 S = zeros(2*numSamples,1);
44 S(1:2:2*numSamples−1) = SPos;
45 S(2:2:2*numSamples) = SNeg;
46 [err,currentValue,currentSamples] = checkError(S,ST,K,r,T,t,...
47 currentSamples,currentValue,2*numSamples);
48 errArray = [errArray err];
49 sampleArray = [sampleArray currentSamples];
50 end
51 % Half number of samples as antithetic
52 sampleArray = sampleArray/2;
53 currentSamples = currentSamples/2;
54

55 end

The following is a function which calculates the running average from the new samples and gets
the convergence error:

1 function [err,currentValue,currentSamples] =...
2 checkError(S,ST,K,r,T,t,currentSamples,currentValue,numSamples)
3 % Check if this is the first calculation or not
4 if currentSamples == 0
5 arraySamples = (currentSamples+1:currentSamples+numSamples)';
6 payoffValue = exp(−r*(T−t))*optionPayoff(S,ST,K);
7 else
8 arraySamples = (currentSamples:currentSamples+numSamples)';
9 payoffValue = [currentSamples*currentValue;...

10 exp(−r*(T−t))*optionPayoff(S,ST,K)];
11 end
12 % Calculate the cumulative mean
13 meanValue = cumsum(payoffValue)./arraySamples;
14 % Calculate the latest average
15 currentValue = meanValue(end);
16 currentSamples = currentSamples+numSamples;
17 % Calculate the standard deviation of the last 1e3 averages
18 err = std(meanValue(end−min(1e3,numSamples−1):end));
19 end

The following is a function which calculate the payoff at maturity:

1 function [P] = optionPayoff(S, ST, K)
2 % Payoff of the fixed strike call option
3 P = max(S−K,0);
4 % Payoff of the fixed strike put option
5 % P = max(K−S,0);
6 % Payoff of the floating strike call option
7 % P = max(ST−S,0);
8 % Payoff of the floating strike put option
9 % P = max(S−ST,0);

10 end

26

6.4.3 Size of Timestep δt Code

The following is the main script for the analysis:

1 % Data inputs
2 T = 1;
3 t = 0;
4 S0 = 100;
5 r = 0.05;
6 K = 100;
7 sigma = 0.2;
8 % Accuracy Inputs
9 dt = [1e−1 1e−2 1e−3 1e−4 1e−5];

10 numSamples = 1e2;
11 randseed = rng;
12 eps = 1e−4;
13 allError = zeros(1,length(dt));
14 allTime = zeros(1,length(dt));
15 currentValue = cell(1,length(dt));
16 currentSamples = cell(1,length(dt));
17 errArray = cell(1,length(dt));
18 sampleArray = cell(1,length(dt));
19 % Loop through each timestep and calculate error
20 for i = 1:length(dt)
21 disp(['dt = ' num2str(dt(i))]);
22 % Get the converged solutiona and compare it to the exact solution
23 tic;
24 [currentValue{i},currentSamples{i},errArray{i},sampleArray{i}] =...
25 timestepMonteCarlo(dt(i),t,T,r,sigma,S0,K,randseed,eps,numSamples);
26 allTime(i) = toc;
27 allError(1,i) = abs(currentValue{i}−5.5468);
28 disp(currentSamples);
29 end
30 %% Plotting
31 figHandle = figure;
32 set(figHandle,'Position',[20,20,1000,600])
33 loglog(dt,allError,'−o');
34 title('Geometric Fixed Strike Asian Call Option')
35 % legend('Euler−Maruyama','Milstein')
36 xlabel('Size of timestep \delta t')
37 ylabel('Measure of Error')
38 set(findall(figHandle,'−property','FontSize'),'FontSize',18)

The following is a function which runs the standard Monte-Carlo method:

1 function [currentValue,currentSamples,errArray,sampleArray] =...
2 timestepMonteCarlo(dt, t, T, r, sigma, S0, K, randseed, eps ,numSamples)
3 % Get the number of time periods needed
4 numTimes = round((T−t)/dt) + 1;
5 err = 100;
6 rng(randseed);
7 % Initialise arrays to hold information
8 errArray = [];sampleArray = [];currentValue = 0;currentSamples = 0;
9 while err > eps

27

10 % normal random samples
11 phi = randn(numSamples,numTimes−1);
12 % Use different formula to get each path
13 % Closed form
14 phi1 = exp((r−0.5*sigmaˆ2)*dt + sigma*phi*sqrt(dt));
15 % Get paths for each formula
16 S = S0*ones(numSamples,numTimes);
17 S(:,2:end) = S(:,2:end).*cumprod(phi1,2);
18 % Get values at the end of each path
19 ST = S(:,end);
20 % Decide if arithmetic or geometric
21 % S1 = mean(S1,2);
22 S = exp(mean(log(S),2));
23 % Calculate the payoff and the error in the last 100 terms
24 [err,currentValue,currentSamples] = checkError(S,ST,K,r,T,t,...
25 currentSamples,currentValue,numSamples);
26 errArray = [errArray err];
27 sampleArray = [sampleArray currentSamples];
28 end
29 end

The following is a function which calculates the running average from the new samples and gets
the convergence error:

1 function [err,currentValue,currentSamples] =...
2 checkError(S,ST,K,r,T,t,currentSamples,currentValue,numSamples)
3 % Check if this is the first calculation or not
4 if currentSamples == 0
5 arraySamples = (currentSamples+1:currentSamples+numSamples)';
6 payoffValue = exp(−r*(T−t))*optionPayoff(S,ST,K);
7 else
8 arraySamples = (currentSamples:currentSamples+numSamples)';
9 payoffValue = [currentSamples*currentValue;...

10 exp(−r*(T−t))*optionPayoff(S,ST,K)];
11 end
12 % Calculate the cumulative mean
13 meanValue = cumsum(payoffValue)./arraySamples;
14 % Calculate the latest average
15 currentValue = meanValue(end);
16 currentSamples = currentSamples+numSamples;
17 % Calculate the standard deviation of the last 1e3 averages
18 err = std(meanValue(end−min(1e3,numSamples−1):end));
19 end

The following is a function which calculate the payoff at maturity:

1 function [P] = optionPayoff(S, ST, K)
2 % Payoff of the fixed strike call option
3 P = max(S−K,0);
4 % Payoff of the fixed strike put option
5 % P = max(K−S,0);
6 % Payoff of the floating strike call option
7 % P = max(ST−S,0);
8 % Payoff of the floating strike put option

28

9 % P = max(S−ST,0);
10 end

6.4.4 Multi Level Monte-Carlo

The following is the main script for the analysis:

1 % Data inputs
2 T = 1;
3 t = 0;
4 S0 = 100;
5 r = 0.05;
6 K = 100;
7 sigma = 0.2;
8 % Accuracy Inputs
9 randseed = rng;

10 eps = 1e−2;
11 M = 4;
12 % Run Multi Level Monte Carlo
13 tic;
14 [multiCurrentValue,multiCurrentSamples,multiLevel,allValues] = ...
15 multiLevelModelMonteCarlo(t,T,r,sigma,S0,K,eps,M,randseed);
16 multiTime = toc;
17 %% Store Data
18 allData = [multiCurrentValue;multiLevel;multiCurrentSamples;multiTime];
19 %% Plotting
20 figHandle = figure;
21 set(figHandle,'Position',[20,20,1000,600])
22 plot(0:multiLevel−1,allValues,'−o',0:multiLevel−1,...
23 5.5468*ones(1,multiLevel),'−o');
24 title('Geometric Fixed Strike Asian Call Option')
25 legend('Multi Level Monte−Carlo','Exact','Location','southeast')
26 xlabel('Level')
27 ylabel('Value of Payoff')
28 set(findall(figHandle,'−property','FontSize'),'FontSize',18)

The following is a function which runs the Multi Level Monte-Carlo method:

1 function [YL,currentSamples,L,allValues] =...
2 multiLevelModelMonteCarlo(t,T,r,sigma,S0,K,eps,M,randseed)
3 % Set random number generator seed
4 rng(randseed)
5 terminateFlag = 1;
6 initN = 1e4;
7 allValues = [];
8 % Do the zero case
9 % Get the estimated mean and variance

10 [firstYl,firstVl] = getFirstEstimate(initN,t,T,r,sigma,S0,K);
11 % Get the optimal NL
12 NL = max(ceil(2*epsˆ(−2)*firstVl),initN);
13 % Finish the iteration from getting the remaining samples
14 [Yl,Vl] = getFirstEstimate(NL,t,T,r,sigma,S0,K);
15 % Update running mean

29

16 YL = (initN*firstYl+NL*Yl)/(initN+NL);
17 allValues = [allValues YL];
18 % Update variance/time step sum
19 sumVL = sqrt(Vl);
20 currentSamples = NL + initN;
21 L = 1;
22 while terminateFlag
23 % Set the time step size
24 hl = Mˆ(−L)*(T−t);
25 % Get the estimated mean and variance
26 [firstYl,firstVl] = getEstimate(initN,M,L,t,T,r,sigma,S0,K);
27 % Get the optimal NL (12)
28 NL = max(ceil(2*epsˆ(−2)*sqrt(firstVl*hl)*...
29 (sumVL+sqrt(firstVl/hl))),1);
30 % Finish the iteration from getting the remaining samples
31 [Yl,Vl] = getEstimate(NL,M,L,t,T,r,sigma,S0,K);
32 % Update running mean
33 oldYL = YL;
34 YL = YL + (initN*firstYl+NL*Yl)/(initN+NL);
35 allValues = [allValues YL];
36 % Update variance/time step sum
37 sumVL = sumVL + sqrt(Vl/hl);
38 % Check if converged
39 if abs(YL − oldYL/M) < (Mˆ2−2)*eps/sqrt(2) | | L == 5
40 terminateFlag = 0;
41 end
42 currentSamples = currentSamples + NL + initN;
43 L = L+1;
44 end
45

46 end

The following are functions to calculate the averages of the payoffs and the variances:

1 function [YL,VL] = getFirstEstimate(numSamples,t,T,r,sigma,S0,K)
2 % Generate random samples
3 phi = randn(numSamples,1);
4 % Get the (1 + r*dt + sigma*phi*sqrt(dt))
5 phi = exp((r−0.5*sigmaˆ2)*(T−t) + phi*sqrt(T−t)*sigma);
6 % Initialise S
7 S = S0*ones(numSamples,2);
8 S(:,end) = S(:,end).*phi;
9 ST = S(:,end);

10 % S = mean(S,2);
11 S = exp(mean(log(S),2));
12 % Get the payoff then find the mean and variance
13 Y = exp(−r*(T−t))*optionPayoff(S,ST,K);
14 YL = mean(Y);
15 VL = var(Y);
16 end

1 function [YL,VL] = getEstimate(numSamples,M,L,t,T,r,sigma,S0,K)
2 % Initialise numTimes and generate random samples

30

3 numTimes = MˆL*(T−t) + 1; % CHECK FOR T−t!!!
4 hl = Mˆ(−L)*(T−t);
5 phi2 = randn(numSamples,numTimes−1);
6 phi1 = reshape(sum(reshape(phi2',M,[])),[],numSamples)';
7 % Get the (1 + r*dt + sigma*phi*sqrt(dt))
8 phi2 = exp((r−0.5*sigmaˆ2)*hl + phi2*sqrt(hl)*sigma);
9 phi1 = exp((r−0.5*sigmaˆ2)*M*hl + phi1*sqrt(hl)*sigma);

10 % Initialise S
11 S2 = S0*ones(numSamples,numTimes);
12 S2(:,2:end) = S2(:,2:end).*cumprod(phi2,2);
13 ST2 = S2(:,end);
14 S1 = S0*ones(numSamples,size(phi1,2)+1);
15 S1(:,2:end) = S1(:,2:end).*cumprod(phi1,2);
16 ST1 = S1(:,end);
17 % Get the average over times for the two levels
18 % S2 = mean(S2,2);
19 % S1 = mean(S1,2);
20 S2 = exp(mean(log(S2),2));
21 S1 = exp(mean(log(S1),2));
22

23 % Get the payoff then find the mean and variance
24 Y = exp(−r*(T−t))*(optionPayoff(S2,ST2,K) − optionPayoff(S1,ST1,K));
25

26 YL = mean(Y);
27 VL = var(Y);
28 end

The following is a function which calculates the running average from the new samples and gets
the convergence error:

1 function [err,currentValue,currentSamples] =...
2 checkError(S,ST,K,r,T,t,currentSamples,currentValue,numSamples)
3 % Check if this is the first calculation or not
4 if currentSamples == 0
5 arraySamples = (currentSamples+1:currentSamples+numSamples)';
6 payoffValue = exp(−r*(T−t))*optionPayoff(S,ST,K);
7 else
8 arraySamples = (currentSamples:currentSamples+numSamples)';
9 payoffValue = [currentSamples*currentValue;...

10 exp(−r*(T−t))*optionPayoff(S,ST,K)];
11 end
12 % Calculate the cumulative mean
13 meanValue = cumsum(payoffValue)./arraySamples;
14 % Calculate the latest average
15 currentValue = meanValue(end);
16 currentSamples = currentSamples+numSamples;
17 % Calculate the standard deviation of the last 1e3 averages
18 err = std(meanValue(end−min(1e3,numSamples−1):end));
19 end

The following is a function which calculate the payoff at maturity:

1 function [P] = optionPayoff(S, ST, K)
2 % Payoff of the fixed strike call option

31

3 P = max(S−K,0);
4 % Payoff of the fixed strike put option
5 % P = max(K−S,0);
6 % Payoff of the floating strike call option
7 % P = max(ST−S,0);
8 % Payoff of the floating strike put option
9 % P = max(S−ST,0);

10 end

32

References

[1] Kyriaki Stavri, Theoretical and Numerical Schemes for Pricing Exotics, UCL, 2004.

[2] Michael B. Giles, Multilevel Monte Carlo Path Simulation, 2008, https://people.maths.ox.
ac.uk/gilesm/files/opre.pdf.

33

https://people.maths.ox.ac.uk/gilesm/files/opre.pdf
https://people.maths.ox.ac.uk/gilesm/files/opre.pdf

	Introduction
	Implementation
	Types of Errors
	Error Analysis

	Model Error
	Implementation
	Results
	Conclusion

	Rate of Convergence
	Implementation
	Results
	Conclusion

	Size of Timestep t
	Implementation
	Results
	Conclusion

	Multi Level Monte-Carlo
	Methodology
	Implementation
	Results & Conclusion

	Appendix
	Underlying Model
	Model Error Results
	Rate of Convergence Results
	Arithmetic - Fixed Strike
	Arithmetic - Floating Strike
	Geometric - Fixed Strike
	Geometric - Floating Strike

	Code
	Model Error Code
	Rate of Convergence Code
	Size of Timestep t Code
	Multi Level Monte-Carlo

