
Cointegration

Joy Tolia

Contents

1 Time Series 1
1.1 Code Overview . 1
1.2 In-depth Learning . 3

1.2.1 Notation . 3
1.2.2 Vector Autoregression . 4
1.2.3 Optimal Lag Selection . 6
1.2.4 Stability Condition . 7
1.2.5 Augmented Dickey-Fuller Test . 8
1.2.6 Johansen’s Procedure . 8

1.3 Cointegration and Statistical Arbitrage . 10
1.4 Backtesting . 13

1.4.1 Strategy 1 . 13
1.4.2 Strategy 2 . 15
1.4.3 Strategy 3 . 17
1.4.4 Transaction Costs Analysis . 20

1.5 Further Considerations . 21

2 Appendix 23
2.1 Time Series Code . 23

2.1.1 testScript . 23
2.1.2 TimeSeries . 24
2.1.3 TimeSeriesCollection . 26

2.1.3.1 vecAutoReg . 29
2.1.3.2 getOptimalLag . 30
2.1.3.3 stabCond . 31
2.1.3.4 statAIC . 31
2.1.3.5 statSC . 32

2.1.4 JCData . 32
2.1.5 BacktestCoint . 34

2.1.5.1 getOptimalSigma . 36
2.1.5.2 optimiseSigma . 37

2.1.6 BacktestData . 37
2.1.6.1 adjustForTrans . 39
2.1.6.2 getPosition . 40
2.1.6.3 getUnderwater . 42

1 Time Series

1.1 Code Overview

A summary of classes made for timeseries analysis is in Table 1. All code written can be seen in
Section 2.1. Included is code in Section 2.1.1 which as an example to get results.

Table 1: Summary of the classes made.
Name Description

TimeSeries

• This is to hold the time series which you pass in.

• It will convert Excel dates to Matlab dates and replace NaN and
zero values in the time series.

TimeSeriesCollection

• This is to hold a set of time series’ together.

• It will take in multiple time series then find the intersection of all
the dates available and adjust the time series’ accordingly.

• It will also hold the returns of the series and the re-indexed series.

JCData
• This holds the important information from the Johansen’s proce-

dure.

BacktestCoint

• This holds the data from fitting an Ornstein-Uhlenbeck process onto
the mean reverting spread obtained from the Johansen’s procedure.

• This also holds BacktestData objects for different strategies and
parameters.

BacktestData
• This is to hold all the information from backtesting given strategies

on the mean reverting spread.

1

TimeSeries

time : double array
series : double array

TimeSeries()
plot()
checkTime()
replaceNaN()
replaceZeros()
calcReturns()
calcVol()

TimeSeriesCollection

time : double array
numSeries : integer
numTimes : integer
multiSeries : double matrix
multiReturns : double matrix
reIndexedSeries : double matrix

TimeSeriesCollection()
plot()
vecAutoreg()
stabCond()
statAIC()
statSC()
getOptimalLag()
adftest()
jcitest()
cov2corr()

Figure 1: Time series related UML class diagrams.

JCData

time : double array
multiSeries : double matrix
maxRank : integer
alpha : double matrix
beta : double matrix
residuals : double matrix
otherData : cell matrix
eigVal : double array

CointJCData()
plot()
adftest()

BacktestCoint

time : double array
residuals : double array
theta : double
mu : double
sigmaOU : double
sigmaEq : double
halfLife : double
btData : BacktestData matrix
sigmaOptimal : double array

BacktestCoint()
plot()
backtest()
getOptimalSigma()

BacktestData

time : double array
position : double array
pnl : double array
underwater : double array
maxDrawdown : double
backtestScore : double
cumTransactions : double array

BacktestData()
plot()
adjustForTrans()

Figure 2: Cointegration and backtesting UML class diagram.

In this section we will look at theory and results at the same time. The results are obtained from
three sets of time series which are the stock prices of Tescos, Sainsburys and Marks & Spencers from
01/07/1988 to 20/07/2016. The data is obtained from Yahoo. In Figure 3 we can see the reindexed
time series:

2

Figure 3: Reindexed time series for Tescos, Sainsburys and Marks & Spencers.

1.2 In-depth Learning

1.2.1 Notation

Let us work through how we can do multivariate linear regression. Let us define some notation in
the following Table 2:

3

Table 2: Notation used for vector autoregression.
Description Type Dummy Index Last Index

Number of time series N i n

Number of time points
for price levels

N t T

Lag N j p

Price level for series i
at time t

R yi,t yn,T

Price levels for all series
at time t

Rn×1 Yt = (y1,t, . . . , yn,t)
′

YT

Return for series i at
time t

R ri,t ri,t

Returns for all series at
time t

Rn×1 Rt = (r1,t, . . . , rn,t)
′

RT

Regressed beta matrix
for a given lag j

Rn×n βj βp

Regressed beta vector
for intercept

Rn×1 β0 -

Matrix of ones with x
rows and y columns

Rx,y
1x,y -

Residual at time t Rn×1 εt εT

Difference in daily price
levels for series i at

time t
R ∆yi,t = yi,t − yi,t−1 -

Difference in daily price
levels for all series at

time t
Rn×1 ∆Yt =

(∆y1,t, . . . ,∆yn,t)
′ -

1.2.2 Vector Autoregression

We would the the following regression:

Rt = β0 +

p∑
j=1

βjRt−j + εt (1)

As we would like to do this in one go, we can turn the sum in Equation 1 into a matrix multiplication
where:

β = (β0, β1, . . . , βp) ∈ Rn×(np+1), R̂t = (1, Rt−1, . . . , Rt−p)
′ ∈ R(np+1)×1 (2)

Let us denote R = (Rp, . . . , RT) ∈ Rn×(T−1−p) as the matrix containing returns from time p to T
for each series. Let ε = (εp, . . . , εT) ∈ Rn×(T−1−p) as the matrix containing the residuals from time

p to T for each series. Finally we denote Z =
(
R̂p, . . . , R̂T

)
∈ R(np+1)×(T−1−p). Then we have the

following matrix equation:
R = βZ + ε (3)

We know to minimise ε by varying β, we get that the following β̂ minimised the residuals:

β̂ = RZ ′
(
ZZ ′

)−1
(4)

4

And we have the residuals are given by the following:

ε̂ = Y − β̂Z (5)

All the code for the vector autoregression can be seen in Section 2.1.3.1. Now we look at the
results from the vector autoregression with lag of p = 3 on the returns of the time series shown
in Figure 3. We get the correlation matrix seen in Table 3. Clearly, we see that the returns are
well correlated between Tescos and Sainsburys. Whereas for Marks & Spencers with others are
positively correlated but not as much. This makes sense as Marks & Spencers is in a slightly
different market compared to others.

Table 3: Correlations between returns of Tescos, Sainsburys and Marks & Spencers. The code
implementation can be seen in Sections 2.1.3 and 2.1.3.1.

Tescos Sainsburys Marks & Spencers

Tescos 100% 51% 35%

Sainsburys 51% 100% 35%

Marks & Spencers 35% 35% 100%

Let us now study the error statistics obtained from the residuals shown in Table 4. Getting an
RMSE of around 2% return is quite a big forecasting error.

Table 4: Error statistics from the residuals from vector autoregression where the implemented code
can be seen in Section 2.1.3.1.

ME RMSE MAE MPE MAPE MASE

Tescos 0 0.0166 0.0119 NaN NaN 0.6987

Sainsburys 0 0.0171 0.0117 NaN NaN 0.6976

Marks &
Spencers

0 0.0184 0.0125 NaN NaN 0.6951

Finally, we look at a Q-Q plot to see how the distributions of the residuals compare to the normal
distribution. We see this in Figure 4. It is clear from the Q-Q plot that the distributions of the
residuals have much fatter tails than the normal distribution. Hence this method of forecasting the
returns does not seem to give the best results.

5

Figure 4: Q-Q plot of the residuals from vector autoregression.

1.2.3 Optimal Lag Selection

We build the residual covariance matrix using the following formula:

Σ̂ =
1

T ′
× ε̂ε̂′ (6)

Where we use T ′ = T − 1− j is the number of observations of residuals we have for lag j. We can
use the Akaike information criterion (AIC) or the Schwartz criterion (SC) also known as Bayesian
information criterion to get the optimal lag:

AIC = log
(∣∣∣Σ̂∣∣∣)+

2k′

T ′
(7)

SC = log
(∣∣∣Σ̂∣∣∣)+

k′ log (T ′)

T ′
(8)

Where k′ = n × (nj + 1) for lag j. We want to test the AIC and SC values for different lags and
choose the lowest value for the optimal lag. This is because we would like to have the smallest
residuals, when we have small residuals the determinant of the covariance matrix is close to zero.
This would make the AIC and SC values lower hence we are looking for the lowest values. The k′

term penalises for a larger lag.

The code implementation for the covariance matrix can be seen in Section 2.1.3.1. For the AIC
and SC tests, see Sections 2.1.3.4 and 2.1.3.5 respectively.

6

Finally the code to get the optimal lag can get seen in Section 2.1.3.2. Here we input a range
consisting of minimum and maximum lag that we want to test between. Then we get the AIC and
SC statistics as well as checking for stability which is in the next section and deleting unstable lags.
Finally, we get the minimum of the AIC and SC statistics, giving priority to the AIC test.

Below, in Table 5, we can see the AIC and SC statistics for lags between 1 and 10. With the lowest
values in red. As we are giving priority to the AIC statistic, we get that a lag of 3 is the most
optimal.

Table 5: AIC and SC statistics for lags between 1 and 10.
Lag AIC SC

1 -24.77400 -24.76266

2 -24.78035 -24.76050

3 -24.78285 -24.75450

4 -24.78114 -24.74427

5 -24.77961 -24.73423

6 -24.77907 -24.72517

7 -24.77778 -24.71537

8 -24.77680 -24.70588

9 -24.77580 -24.69635

10 -24.77443 -24.68646

1.2.4 Stability Condition

Given Equation 1, we need that βkj for j = 1, . . . , p tends to the zero matrix for the equation to be
stable. We can check this by checking all the eigenvalues of βj have an absolute value strictly less
than one. This is because of the diagonal decomposition βj = V DV −1 where:

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 (9)

Therefore, if |λi| < 1 then we know that elements in Dk will not diverge as k →∞. We have that
βkj = V DkV −1, therefore if elements of Dk do not diverge then elements of βkj will not diverge.

Hence, we have make a stability condition that all the eigenvalues of the matrices βj for j = 1, . . . , p
have their absolute value less than one for us to have a stable model which does not diverge.

The code for checking the stability condition is in Section 2.1.3.3. Here we get the eigenvalues of
the matrix by using the built in eig function provided in Matlab. Then we check if each eigenvalue
has an absolute value of less than one. Finally, for the time series’ we are working with, we get
that for all lags between 1 and 30 that they all give us stable matrices.

7

http://uk.mathworks.com/help/matlab/ref/eig.html

1.2.5 Augmented Dickey-Fuller Test

This test is to see if the a time series is stationary. A time series is stationary if its statistical
properties such as mean, variance and autocorrelation are independent of time constants. Assuming
the daily differences of a time series ∆yi,t are stationary then we can do the following regression:

∆yi,t = φiyi,t−1 +

p∑
j=1

φi,j∆yi,t−j + εi,t (10)

By regressing yi,t−1,∆yi,t−1, . . . ,∆yi,t−p on ∆yi,t, we get the values for φi, φi,1, . . . , φi,p. Assuming
all the differences in Equation 10 are stationary then if yi,t−1 is not stationary then the value for
φi will be insignificant or close to zero. Our null hypothesis is that yi,t has a unit root or is non
stationary. If φi is not insignificant then we reject the null hypothesis in favour of the alternative
(stationary) model. We use the Dickey-Fuller distribution to check for the significance of φi.

We use the Matlab in built function adftest for doing this test, however we implement a function
in TimeSeriesCollection shown in Section 2.1.3. This function calls the in built matlab function
for the ADF test multiple times to be able to give us the output for each series contained within
the object. We get that in terms of price levels, all the the series accepted the null hypothesis of
having a unit root implying that they are all non stationary.

Having done the ADF tests on our time series, we find that non of them reject the null hypothesis
of having a unit root implying that they are all non stationary time series. Then using the inbuilt
Matlab function we can specify the model ’ARD’ to check for drift and we still don’t get a rejection
of the null hypothesis implying that the time series’ are non stationary.

1.2.6 Johansen’s Procedure

This is a generalisation of the augmented Dickey-Fuller test. A pair of time series are cointegrated
if they are integrated series of order 1 and there exists a linear combination of the time series’ such
that it is a stationary time series. Suppose we have the following equation:

∆Yt = ΦDt + ΠYt−1 +

p∑
j=1

Γj∆Yt−j + εt (11)

In Equation 11, ∆Yt,∆Yt−1, . . . ,∆Yt−p are all assumed to be stationary. The only term that could
have non stationary terms is Yt−1. Therefore, as with the augmented Dickey-Fuller test, we want
to study the term in front of Yt−1 which is Π. This means that ΠYt−1 must have cointegrating
relations if they exist.

Π ∈ Rn×n, we would like to study this matrix. If Yt was stationary or did not a unit root then Π
would be non-singular or have a full rank. However, if Yt was non stationary or had a unit root
then Π would be non singular or have rank r < n, there would be two options in this case:

1. r = 0, Π has null rank which means it is a zero matrix and there are no cointegrating relations.
This is equivalent of φi being insignificant in the augmented Dickey-Fuller test

8

http://uk.mathworks.com/help/econ/adftest.html

2. 0 < r < n, this means that there are r cointegrating relations which make the linear combi-
nations of the series’ stationary. This is what we are looking for.

Given Π has rank r, then it can be written as Π = αβ′ where α, β ∈ Rn×r and rank of both α and
β are r.

The Johansen’s procedure is a set of iterative hypothesis tests where the null hypothesis is that
rank of Π is r0 = r and the alternative is that the rank r0 > r where r = 0, . . . , n− 1.

Therefore, we start with the null hypothesis that the rank r0 = 0, if we do not reject the null
hypothesis then the rank of Π is 0 and there are no cointegrating relations. However, if we do reject
the null hypothesis then we know that the rank is greater than 0 which means there is at least one
cointegrating relation. The next hypothesis has the null hypothesis that the rank r0 = 1 and the
alternative is that r0 > 1 so here if we accept the null then we know the rank of Π is 1 and if we
reject the null then the rank of Π is strictly greater than one. We keep doing this until we test the
last hypothesis with null that the rank of Π is n− 1.

Now that we have an overview for the Johansen’s procedure. Let us see how each hypothesis test
works. In each test, we would like to test for the rank of the matrix Π. We can do the diagonal-
isation decomposition to get Π = V DV −1, where D has a form shown in Equation 9. It can be
shown that the rank of Π is equal to the rank of D. The rank of D is the number of non-zero
eigenvalues. Therefore, the problem comes down to testing if the eigenvalues are too close to zero.
The eigenvalues have a certain property that make their values between 0 and 1.

Suppose we order the eigenvalues as follows; 1 > λ1 > · · · > λn > 0. Each hypothesis test checks if
the remaining eigenvalues are close enough to zero. There are two types of tests, the trace eigen-
value test and the maximum eigenvalue test, given we are testing for rank r0:

β is formed from the eigenvectors corresponding to the largest r eigenvalues.

Trace Statistic = −T
n∑

i=r0+1

log (1− λi) (12)

Max Eigenvalue Statistic = −T log(1− λr0+1) (13)

Given the test statistics in Equations 12 and 13, we compare them against critical values to accept
or reject the null hypothesis. For example if we look at the max eigenvalue statistic then if λr0+1

is close to zero then the test statistic is close to zero, but as λr0+1 → 1 the test statistic tends to
infinity. Therefore, to reject the null hypothesis, we want a large test statistic but to accept the
null hypothesis we want a test statistic close to zero.

β is formed from the eigenvectors corresponding to the biggest r eigenvalues found above. Then
we can get the residuals ε = β′Y ∈ Rr×T . We now have r stationary time series that we can backtest.

All the code for the Johansen’s procedure can be found in the constructor of JCData in Section 2.1.4.
In this constructor, we run the in built Matlab function for the Johansen’s procedure called jcitest

9

http://uk.mathworks.com/help/econ/jcitest.html

and do both the trace and the maximum eigenvalue tests. From this, we choose the highest rank
given out of the two tests so we can backtest every cointegrating relations available and store all
the data from the tests. In Tables 6 and 7, we can see the data.

Table 6: Data from the Johansen’s procedure using the trace test.

Rank Null rejected Test statistic Critical value
Probability of

statistic
Eigenvalue

0 1 31.3635 29.7976 0.0328 0.0033

1 0 7.4230 15.4948 0.5702 7.2149× 10−4

2 0 2.1556 3.8415 0.1426 2.9533× 10−4

Table 7: Data from the Johansen’s procedure using the maximum eigenvalue test.

Rank Null rejected Test statistic Critical value
Probability of

statistic
Eigenvalue

0 1 23.9406 21.1323 0.0196 0.0033

1 0 5.2673 14.2644 0.7215 7.2149× 10−4

2 0 2.1556 3.8415 0.1426 2.9533× 10−4

Let us draw some conclusions from the results in Tables 6 and 7 for the Johansen’s procedure.

• In both tests the default significance level of 5% = 0.05 was used.

• We can see that the null hypothesis for the rank of 0 was rejected in both tests meaning that
the rank was at least 1. However, the null hypothesis for the rank of 1 was accepted in both
tests meaning that there is one cointegrating relation between the three time series.

• It is clear why the hypotheses were accepted or rejected for each rank by comparing the test
statistics and the critical values. The null hypothesis was rejected when the test statistic was
greater than the critical value.

• We can also use the probability of the test statistic for check the hypotheses, where the null
was rejected when the probability was less than the significance level of 0.05.

• Finally, we can see the eigenvalues clearly that that the first eigenvalue is much bigger than the
second two which gives the best intuition that the matrix has rank 1 due to the diagonalisation.

• It is interesting to note that the two tests have the same results for the last rank. This is
because when there is only one eigenvalue left to test, both tests coincide in terms of their
methods.

1.3 Cointegration and Statistical Arbitrage

Once we have our residual time series εt from the Johansen’s procedure, we would like to fit
the Ornstein-Uhlenbeck process which is shown in Equation 14 where dWt is a Brownian motion
increment.

10

dεt = −θ (εt − µ) dt+ σOUdWt (14)

We can solve the SDE in Equation 14 by doing the following:

dεt = −θ (εt − µ) dt+ σOUdWt

m

d
(
εte

θt
)

= θµeθtdt+ σOUe
θtdWt

m

εt+τe
θ(t+τ) − εteθt = θµ

∫ t+τ

t
eθsds+ σOU

∫ t+τ

t
eθsdWs

m

εt+τ = εte
−θτ + µ

(
1− e−θτ

)
+ σOU

∫ t+τ

t
e−θ(t+τ−s)dWs

We have the Equation 15 shown below by writing the random term as rt,τ :

εt+τ = εte
−θτ + µ

(
1− e−θτ

)
+ rt,τ (15)

Therefore, running a regression on εt against itself with a lag of 1 day or τ = 1/252, we can find
the constants A and B shown in Equation 16:

εt+τ = A+Bεt + rt,τ (16)

Equating coefficients in Equations 15 and 16, we find θ and µ:

θ = − log (B)

τ
, µ =

A

1−B
(17)

Now, we would like to find a formula for σOU. Let us find the expectation and variance of εt,τ .

E [εt+τ |εt] = E [εt|εt] e−θτ + µ
(

1− e−θτ
)

+ σOUE
[∫ t+τ

t
e−θ(t+τ−s)dWs

∣∣∣∣ εt]︸ ︷︷ ︸
=0

= εte
−θτ + µ

(
1− e−θτ

)

V [εt+τ |εt] = E
[

(εt+τ − E [εt+τ |εt])2
∣∣∣ εt]

= E

[(
σOU

∫ t+τ

t
e−θ(t+τ−s)dWs

)2
]

= σ2OUE
[∫ t+τ

t
e−2θ(t+τ−s)ds

]
(By Ito isometry)

=
σ2OU

2θ

(
1− e−2θτ

)
11

Therefore, we get formula in Equation 18 for calculating σOU:

σOU =

√
2θV [εt+τ |εt]

1− e−2θτ
(18)

We have two extra parameters; σEq which will be used as signals for entry and exit for our trading
strategy and also the half life τ̃ which have the formulas shown in Equation 19:

σEq ≈
σOU√

2θ
, τ̃ ∝ log (2)

θ
(19)

We do all these calculations in the constructor of BacktestCoint in Section 2.1.5 where we also
use the built in Matlab function fitlm to fit a linear regression model. In Figure 5, we can see
the residual with its mean µ and entry/exit barrier µ± σEq. From the figure, we can see that the
residual is clearly mean reverting however, it does not necessarily look symmetric as you can see
it goes far more negative in terms of size then it does positive. But if we look at the time that is
spent outside µ ± σEq then it seems about equal. We can also see a sample plot in yellow driven
by Equation 20 where φ is a standard normal sample.

εt+τ = εte
−θτ + µ

(
1− e−θτ

)
+ σOUφ

√
1− e−2θτ

2θ
(20)

Figure 5: Plot of the residuals with its mean, standard deviation barriers and a sample path.

We get the parameters shown in Table 8. The most useful parameter for our intuition is the half
line τ̃ which says that it takes under a year to go from µ ± σEq to µ. However from Figure 5, it

12

http://uk.mathworks.com/help/stats/fitlm.html

seems that a lot of the times, it takes longer than the half life to get back to equilibrium, this is
important as we need to know the approximate or expected time we are going to hold the position.

Table 8: Parameters from fitting an Ornstein-Uhlenbeck process to the residuals.
θ µ σOU σEq τ̃

1.4934 0.1240 1.7157 0.9928 0.4641

Given this data and having have a way to score each strategy depending on the return and risk,
we can do an optimisation to find the optimal entry/exit levels. This can be seen in Section 2.1.5.1
and 2.1.5.2. To optimise our entry/exit levels, we make an objective function which we can adjust
to what we want to maximise or minimise. In this case we are trying to maximise the end P&L
divided by the maximum drawdown. Then we use the Matlab built in function fminsearch to do
the optimisation with the initial point as σEq to find the optimal entry/exit levels or equivalently
the optimal σ.

1.4 Backtesting

Once we have our residuals, we would like to make a strategy that would have the most returns
and the smallest maximum drawdown. We have made a few different strategies, all have their own
unique selling points. All strategies have one part in common which is to buy low and sell high and
vice versa. For this part of the project we look at the code in Section 2.1.6. This is a class which
does all the backtesting and produces plots. Let us now look at the different strategies for trading
the residuals.

With each strategy we work out the position held of the residual time series usually in the multiples
of 1, with the code for this in Section 2.1.6.2. From there we can calculate the P&L by doing dot
product on the position array and the daily difference of the residual time series. From there we
can calculate the underwater plot and the maximum drawdown from the P&L array, with the code
for this in Section 2.1.6.3. For the underwater plot, we look at the past highest P&L and take away
the current P&L, to calculate the maximum drawdown we get the maximum of the underwater
values. All of this is done in the constructor of BacktestData in Section 2.1.6.

We evaluate each strategy using a backtesting score which is shown in Equation 21:

Backtest Score =
End P&L

Maximum Drawdown
(21)

1.4.1 Strategy 1

In this strategy, we take positions at µ±σ and close the positions once we reach the equilibrium µ.
We detail the strategy in Algorithm 1. The code for this strategy can be found in Section 2.1.6.2.

13

http://uk.mathworks.com/help/matlab/ref/fminsearch.html

Algorithm 1 Strategy 1

If current position is 0:
If residual level is > µ+ σ:

Take a short position of -1.
Else if residual level is < µ− σ:

Take a long position of +1.
Else:

Keep a 0 position.
Else if current position is -1:

If residual level is < µ− σ:
Close the short position to 0.

Else:
Keep the position at -1.

Else if current position is 1:
If residual level is > µ+ σ:

Close the long position to 0.
Else:

Keep the position at +1.

We can now see backtest this strategy using σEq and also calculate the optimal σ. From this, we
obtain Figures 6 and 7 respectively. The red line which represents position takes a value of µ is
position is 0, value of µ+ σ if the position is is +1 and a value of µ− σ is the position is -1.

Figure 6: Backtesting results from strategy 1 with σEq.

14

Figure 7: Backtesting results from strategy 1 with optimal σ.

Let us make some remarks for Strategy 1:

• From Figures 6 and 7, it is clear that optimising σ makes a big difference as the maximum
drawdown is the same for both σ but the P&L increases by about 10%.

• In this strategy, the optimal σ is lower than σEq.

• One of the issues with this strategy is that there are long time periods, for example 1991-1992
and 1994-1995, where no position is held.

• Not getting any returns for years at a time could be a problem when managing money unless
we are running multiple of these types of strategies in the hope for diversification.

• Having a maximum drawdown of around -2.62 is around 10% of our end P&L which is quite
high.

1.4.2 Strategy 2

This is a similar strategy for the first one. In this strategy, we take positions at µ ± σ and close
the positions at the opposite side µ∓ σ. We detail the strategy in Algorithm 2. The code for this
strategy can be found in Section 2.1.6.2.

15

Algorithm 2 Strategy 2

If current position is 0:
If residual level is > µ+ σ:

Take a short position of -1.
Else if residual level is < µ− σ:

Take a long position of +1.
Else:

Keep a 0 position.
Else if current position is -1:

If residual level is < µ− σ:
Close the short position to 0.

Else:
Keep the position at -1.

Else if current position is 1:
If residual level is > µ+ σ:

Close the long position 0.
Else:

Keep the position at +1.

We can now see backtest this strategy using σEq and also calculate the optimal σ. From this, we
obtain Figures 8 and 9 respectively. The red line which represents position takes a value of µ is
position is 0, value of µ+ σ if the position is is +1 and a value of µ− σ is the position is -1.

Figure 8: Backtesting results from strategy 2 with σEq.

16

Figure 9: Backtesting results from strategy 2 with optimal σ.

Let us make some remarks for Strategy 2:

• From Figures 8 and 9, it is clear that optimising σ makes a big difference as the maximum
drawdown is decreased and the P&L is increased.

• This strategy is different to strategy one where because the position is closed near to where a
new position will normally be entered into, there are hardly any times where position is kept
at 0.

• However, this means that there are times where we hold the same position for over 4 years,
for example 2002-2006 where we are underwater. When sometimes, we would have closed the
position at equilibrium and locked in some P&L.

• It is clear that mean reverting strategies such as these make P&L when there are large swings
such as in the time period 2007-2011.

• Comparing Strategies 1 and 2; Strategy 2 has done better in the backtest scores for both σ’s
by both increasing the end P&L and reducing the maximum drawdown.

1.4.3 Strategy 3

This is a very aggresive strategy. In this strategy, we take positions at µ± σ then we take a bigger
position if the residual level goes against us and close the positions at the opposite side µ∓ σ. We
detail the strategy in Algorithm 3. The code for this strategy can be found in Section 2.1.6.2.

17

Algorithm 3 Strategy 3

Set next position to current position, however:
If current position is 0:

If residual level is > µ+ σ:
Take a short position of -1.

Else if residual level is < µ− σ:
Take a long position of +1.

Else if current position is < 0:
If residual level is < µ− σ:

Close the short position to 0.
Else if residual level is > µ+ (i× σ):

Increase the short position to −i.
Else if current position is > 0:

If residual level is > µ+ σ:
Close the long position to 0.

Else if residual level is < µ− (i× σ):
Increase the long position to +i.

We can now see backtest this strategy using σEq and also calculate the optimal σ. From this, we
obtain Figures 10 and 11 respectively. The red line which represents position takes a value of µ is
position is 0, value of µ + (i× σ) if the position is +i and a value of µ − (i× σ) is the position is
−i.

Figure 10: Backtesting results from strategy 3 with σEq.

18

Figure 11: Backtesting results from strategy 3 with optimal σ.

Let us make some remarks for Strategy 3:

• From Figures 10 and 11, it is clear that optimising σ makes a difference as the P&L is increased
by 20%, however the drawdown also increased slightly.

• This strategy is similar to Strategy 2 as we will hardly have 0 position but this strategy is
more aggressive, taking larger positions when the residual level goes against the strategy.

• This strategy, like the other two has a similar problem that when volatility is low, it does
not do as well and there can be large time periods when this is the case, as seen between
2002-2006.

• Comparing strategies; Strategy 3 has done better in the backtest scores for both σ’s by both
increasing the end P&L than strategy. Hoever, compared to Strategy 2, Strategy 3 is still
not as good when it comes to the backtest scores.

• The reason for this strategy was to leverage up on the times when there is high volatility and
large swings in the hope that it would beat the times of low volatility. The end P&L is more
than double of Strategy 2, however, the maximum drawdown is more than triple of Strategy
2. This shows that it is similar to the effect of leveraging up any normal strategy.

• Therefore, it is important to look at the ratio of return and risk to be able to compare like
for like.

19

1.4.4 Transaction Costs Analysis

It is important to have an idea of transactions costs that we would be facing when we are back-
testing our strategies. We will take a simple approach of getting charged a flat fee proportional to
the change in the absolute size of our position.

As part of the class BacktestData, we have a function called adjustForTrans, the code for which
can be seen in Section 2.1.6.1.

In Figure 12, we can see how transaction costs affects our P&L for Strategy 2 with optimal σ.

Figure 12: Effect of transaction costs on P&L for Strategy 2 with optimal σ.

Table 9: Effect of transaction costs on backtest scores for Strategy 2 with optimal σ.
No Fee 1% 10% 50%

14.79 14.67 13.59 6.78

From Figure 12 and Table 9, it is clear that transaction costs have a big effect on our P&L and on
our back test scores which more than halve big 50% flat fees on the size of our positions. Transaction
costs are unlikely to be so big however it is good to know the extent to which our P&L gets affected
by transaction costs. We now do the same but for Strategy 1.

20

Figure 13: Effect of transaction costs on P&L for Strategy 1 with optimal σ.

Table 10: Effect of transaction costs on backtest scores for Strategy 1 with optimal σ.
No Fee 1% 10% 50%

11.37 11.17 9.39 1.12

From Figure 13 and Table 10, it looks like Strategy 1 can get affected largely by transaction costs
due to its slow gain in P&L. It is interesting as this takes positions than Strategy 2 but the losses
from the transaction costs seem have a greater effect than the fewer changes in positions. We can
see that with 50% fees, the P&L is close to zero and more often negative than positive. The only
reason P&L is in green at the end is because of the large swings around 2007.

1.5 Further Considerations

There are many parts of the project I would like to work further on and hope to do in the future.

• When doing the backtesting, I would want to split the data into two parts, one for testing
for cointegration and fitting the Ornstein-Uhlenbeck process then the other part of the data
(would be the larger part) to be able to backtest on. This means that we can see if our
hypothesised strategy works in the out of sample or ‘unknown’ data.

• In terms of testing for cointegration, I would want to make the code flexible enough so that
I pass in many time series at once then the code would check for cointegration on all the

21

possible combinations of the time series. Then we can backtest strategies on multiple time
series.

• I would like to look at diversification of the the strategies so when there are large periods of
low volatility in our strategy, there would be other strategies working on high volatility.

• Understanding costs for taking on positions and the capital required would be very interesting
as there would be costs repo costs on the short positions and the rate we would have to pay
to be able to borrow money.

• Finding factors for what drives the mean reverting spread would also be interesting and would
have something to do with the volatility.

• I would like to calculate the α against a benchmark returns and other time series returns to
see if the strategy has information on the market or it is plain luck driving the P&L.

• I would also like to come up with more strategies which could take advantage of periods of
the low volatility adding further to the P&L.

22

2 Appendix

2.1 Time Series Code

2.1.1 testScript

1 %% Load data−−−
2 load('spmData.mat');
3

4 %% TimeSeries Initialisation−−−
5 % Make time series
6 timeSeries(1,1) = TimeSeries(tescos);
7 timeSeries(2,1) = TimeSeries(sainsburys);
8 timeSeries(3,1) = TimeSeries(mands);
9

10 %% TimeSeriesCollection Initialisation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 % Make time series collection
12 spm = TimeSeriesCollection(timeSeries);
13 spm.plot();
14 % Do the ADF tests for all three models and check for determinisitc trend
15 [h,pValue,stat,cValue,reg] = spm.adftest('model',{'AR';'ARD'});
16

17 %% Vector Autoregresson−−
18 % Get optimal lag
19 p = spm.getOptimalLag(1,30);
20 % Run vector autoregression
21 [BHat,epsHat,SigmaHat,errorStats] = spm.vecAutoreg(p);
22 % Get correlation matrix from covariance matrix
23 corrHat = spm.cov2corr(SigmaHat);
24 % Q−Q plot
25 figHandle = figure;
26 qqplot(epsHat')
27 legend('Tescos','Sainsburys','Marks & Spencers','location','southeast')
28 changeFig(figHandle)
29

30 %% Johansen's Test−−−
31 % Run Johansen's test from TimeSeriesCollection which outputs JCData object
32 cointData = spm.jcitest('display','off');
33

34 %% Backtesting−−−
35 % Make BacktestCoint objects which in turn hold BacktestData objects when
36 % backtest() is called
37 for i = 1:cointData.maxRank
38 bt(1,i) = BacktestCoint(cointData.time,cointData.residuals(:,i));
39 bt(1,i) = bt(1,i).backtest();
40 end
41

42 %% Transaction Costs Analysis−−
43 btdata = bt(1,1).btData{2,1};
44 btdata = btdata.adjustForTrans([0.01 0.1 0.5]);

23

2.1.2 TimeSeries

1 classdef TimeSeries
2 % TimeSeries object to hold a single time series and be able to produce
3 % different results and properties of that time series
4

5 properties
6 time % Array of times
7 series % Array of prices
8 end % properties
9

10 methods
11 %%−−−
12 % Constructor−−
13 function obj = TimeSeries(varargin)
14

15 % If non empty constructor
16 if nargin > 0
17

18 if nargin > 2
19 error('Too many input arguments.');
20 elseif nargin == 2
21 % Data validation
22 if size(varargin{1},2) ˜= 1 | | size(varargin{2},2) ˜=1
23 error('Input arrays are not column vectors');
24 end
25 if size(varargin{1},1) ˜= size(varargin{2},1)
26 error('Number of rows both arrays are different.');
27 end
28 % Put the arrays together
29 try
30 varargin{1} = [varargin{1} varargin{2}];
31 catch
32 error('Input arrays are not both numeric');
33 end
34 varargin{2} = [];
35 elseif nargin == 1
36 % Data validation
37 if size(varargin{1},2) ˜= 2
38 error('Input array does not have two columns.');
39 end
40 end % if−else
41

42 % Data validation
43 if ˜isnumeric(varargin{1})
44 error('Input array or arrays are not numeric');
45 end
46 varargin{1}(:,1) = obj.checkTime(varargin{1}(:,1));
47

48 % Sort time
49 [sortedTime,sortedIndices] = sort(varargin{1}(:,1));
50 % Set time
51 obj.time = sortedTime;
52 sortedSeries = varargin{1}(sortedIndices,2);

24

53 obj.series = obj.replaceNaN(sortedTime,sortedSeries);
54 obj.series = obj.replaceZeros(sortedTime,obj.series);
55 end
56

57 end % Constructor
58

59 %%−−−
60 % Plotting function−−
61 function plot(varargin)
62 if nargin == 1 | | (nargin == 2 && strcmpi(varargin{2},'levels'))
63 figHandle = figure;
64 plot(varargin{1}.time,varargin{1}.series);
65 title('Time Series Levels');
66 ylabel('Levels');
67 elseif nargin == 2 && strcmpi(varargin{2},'returns')
68 figHandle = figure;
69 plot(varargin{1}.time(2:end),...
70 log(varargin{1}.series(2:end)./...
71 varargin{1}.series(1:end−1)));
72 title('Time Series Returns');
73 ylabel('Returns');
74 else
75 error('Input arguments are not right');
76 end % if−else
77 xlabel('Time');
78 yLimits = ylim;
79 axis([varargin{1}.time(1),varargin{1}.time(end),...
80 yLimits(1),yLimits(2)]);
81 changeFig(figHandle);
82 datetick('x','yyyy','keeplimits','keepticks')
83 end % plot
84

85 %%−−−
86 % Calculate volatility−−−
87 function returns = calcReturns(obj)
88 % Calculate log return
89 returns = log(obj.series(2:end)./obj.series(1:end−1));
90 end % calcVol
91

92 %%−−−
93 % Calculate volatility−−−
94 function volTimeSeries = calcVol(obj,N)
95 % Calculate log return
96 logReturn = obj.calcReturns();
97 vol = zeros(size(logReturn,1)−N+1,1);
98 % Loop through to calculate volatility
99 for i = 1:size(vol,1);

100 vol(i) = sqrt(252)*std(logReturn(i:i+N−1));
101 end
102 % Make time series
103 volTimeSeries = TimeSeries();
104 volTimeSeries.time = obj.time(N+1:end);
105 volTimeSeries.series = vol;
106 end % calcVol
107

108 end % methos

25

109

110 methods (Access = private)
111 %%−−−
112 % Function to change to Matlab dates and handle NaN values−−−−−−−−−
113 function outputTime = checkTime(obj,inputTime)
114 % Check if excel dates or matlab dates
115 if inputTime(1) < 100e3
116 inputTime = x2mdate(inputTime);
117 end
118 % Deal with NaN values
119 outputTime = obj.replaceNaN((1:size(inputTime,1))',inputTime);
120 end % checkTime
121

122 %%−−−
123 % Function to handle NaN values−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 function outputYAxis = replaceNaN(˜,inputXAxis,inputYAxis)
125 if any(isnan(inputYAxis))
126 notNaNIndices = ˜isnan(inputYAxis);
127 outputYAxis = interp1(inputXAxis(notNaNIndices),...
128 inputYAxis(notNaNIndices),inputXAxis);
129 else
130 outputYAxis = inputYAxis;
131 end
132 end % replaceNaN
133

134 %%−−−
135 % Function to handle zero values−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 function outputYAxis = replaceZeros(˜,inputXAxis,inputYAxis)
137 if any(inputYAxis==0)
138 notZeroIndices = inputYAxis˜=0 ;
139 outputYAxis = interp1(inputXAxis(notZeroIndices),...
140 inputYAxis(notZeroIndices),inputXAxis);
141 else
142 outputYAxis = inputYAxis;
143 end
144 end % replaceNaN
145

146 end % private methods
147

148 end % classdef

2.1.3 TimeSeriesCollection

1 classdef TimeSeriesCollection
2 % TimeSeriesCollection object to hold multiple time series with the
3 % same time array associated with each series
4

5 properties
6 time % Array of times which are associated to all the series
7 numSeries % Number of different series
8 numTimes % Number of time points
9 multiSeries % All the series stored together

10 multiReturns % All the returns stored together

26

11 reIndexedSeries % Re−indexed series starting from one
12 end % properties
13

14 methods
15 %%−−−
16 % Constructor−−
17 function obj = TimeSeriesCollection(varargin)
18

19 % Cannot have an empty constructor
20 if nargin == 0
21 error('Need at least one TimeSeries as input.');
22 end
23

24 % Check if all inputs are TimeSeries
25 counter = 0;
26 for i = 1:nargin
27 if ˜isa(varargin{i},'TimeSeries')
28 error('All inputs need to be TimeSeries.');
29 end
30 % Turn into column vector
31 varargin{i} = varargin{i}(:);
32 % Add to the counter to calculate number of series
33 counter = counter + size(varargin{i},1);
34 end
35

36 % Set numSeries
37 obj.numSeries = counter;
38

39 % Store all the times and series'
40 allTime = cell(1,obj.numSeries);
41 allSeries = cell(1,obj.numSeries);
42 counter = 1;
43 for i = 1:nargin
44 for j = 1:size(varargin{i},1)
45 allTime{counter} = varargin{i}(j).time;
46 allSeries{counter} = varargin{i}(j).series;
47 counter = counter + 1;
48 end
49 end
50

51 % Intersect times
52 intersectTime = allTime{1,1};
53 if obj.numSeries > 1
54 for i = 2:obj.numSeries
55 intersectTime = intersect(intersectTime,...
56 allTime{1,i},'stable');
57 end
58 end
59

60 % Set time
61 obj.time = intersectTime;
62 obj.numTimes = size(intersectTime,1);
63

64 % Get the right values from series
65 finalSeries = zeros(size(obj.time,1),obj.numSeries);
66 for i = 1:obj.numSeries

27

67 % Get indices from intersection
68 [˜,˜,tempIndices] = intersect(obj.time,allTime{i});
69 % Get the corresponding series values
70 finalSeries(:,i) = allSeries{i}(tempIndices,1);
71 end
72 % Set multiSeries
73 obj.multiSeries = finalSeries;
74 % Set multiReturns
75 obj.multiReturns = log(finalSeries(2:end,:)...
76 ./finalSeries(1:end−1,:));
77 obj.reIndexedSeries = [ones(1,obj.numSeries);...
78 cumprod(exp(obj.multiReturns))];
79

80 end % Constructor
81

82 %%−−−
83 % Function to plot−−−
84 function plot(varargin)
85 if nargin == 1
86 figHandle = figure;
87 hold on;
88 for i = 1:varargin{1}.numSeries
89 plot(varargin{1}.time,varargin{1}.reIndexedSeries(:,i));
90 end
91 hold off;
92 title('Re−Indexed Series');
93 xlabel('Time');
94 yLimits = ylim;
95 axis([varargin{1}.time(1),varargin{1}.time(end),...
96 yLimits(1),yLimits(2)]);
97 changeFig(figHandle);
98 datetick('x','yyyy','keeplimits','keepticks')
99 else

100 error('No input argument required.');
101 end % if−else
102 end % plot
103

104 %%−−−
105 % Function for vector auto regression with lag p−−−−−−−−−−−−−−−−−−−
106 [BHat,epsHat,SigmaHat,errorStats] = vecAutoreg(obj,p)
107

108 %%−−−
109 % Stability condition−−
110 stable = stabCond(obj,BHat)
111

112 %%−−−
113 % Akaike information criterion−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
114 statistic = statAIC(obj,SigmaHat,p)
115

116 %%−−−
117 % Schwartz criterion or Bayesian information criterion−−−−−−−−−−−−−
118 statistic = statSC(obj,SigmaHat,p)
119

120 %%−−−
121 % Function to find optimal lag−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 p = getOptimalLag(obj,minLag,maxLag)

28

123

124 %%−−−
125 % Function to do the Augmented Dickey Fuller test−−−−−−−−−−−−−−−−−−
126 function [h,pValue,stat,cValue,reg] = adftest(obj,varargin)
127

128 % Initialise variables
129 h = cell(1,obj.numSeries);
130 pValue = cell(1,obj.numSeries);
131 stat = cell(1,obj.numSeries);
132 cValue = cell(1,obj.numSeries);
133 reg = cell(1,obj.numSeries);
134 % Loop through each series to run adftest
135 for i = 1:obj.numSeries
136 [h{i},pValue{i},stat{i},cValue{i},reg{i}] = adftest(...
137 obj.multiSeries(:,i),varargin{:});
138 end
139

140 end % adftest
141

142 %%−−−
143 % Function to run Johansen's test−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
144 function cointData = jcitest(obj,varargin)
145 % Make cointJCData object and run Johansen's test
146 cointData = JCData(obj.time,obj.multiSeries,varargin{:});
147

148 end % jcitest
149

150 end % methods
151

152 methods(Static)
153 %%−−−
154 % Function to turn covariance matrix into a correlation matrix−−−−−
155 function corr = cov2corr(Sigma)
156 corr = Sigma./kron(sqrt(diag(Sigma)),sqrt(diag(Sigma))');
157 end % cov2corr
158

159 end % static methods
160

161 end % classdef

2.1.3.1 vecAutoReg

1 function [BHat,epsHat,SigmaHat,errorStats] = vecAutoreg(obj,p)
2 % Function for vector auto regression with lag p
3

4 % Build matrix Y which are (p+1)th to end returns and has
5 % numSeries rows
6 R = obj.multiReturns(p+1:end,:)';
7 % Initialise matrix Z with top row as ones, has p*numSeries + 1
8 % rows and number of returns − p columns
9 Z = ones(1+p*obj.numSeries,(obj.numTimes−1)−p);

10 for i = 1:p
11 % Starting with times p to end −1 shift back one to get to

29

12 % 1 to end − p and store going downwards
13 Z(2+(i−1)*obj.numSeries:1+i*obj.numSeries,:) =...
14 obj.multiReturns(p−i+1:end−i,:)';
15 end
16

17 % Calculate matrix BHat
18 BHat = R*Z'/(Z*Z');
19 % Calculate matrix eps hat
20 epsHat = R − BHat*Z;
21 % Calculate covariance matrix covHat
22 SigmaHat = epsHat*epsHat'/(size(epsHat,2));
23

24 errorNames = {'MeanError','RootMeanSquaredError',...
25 'MeanAbsoluteError','MeanPercentageError',...
26 'MeanAbsolutePercentageError','MeanAbsoluteScaledError'};
27

28 % Error statistics
29 % Mean error
30 ME = mean(epsHat,2);
31 % Root mean squared error
32 RMSE = sqrt(mean(epsHat.ˆ2,2));
33 % Mean absolute error
34 MAE = mean(abs(epsHat),2);
35 percError = epsHat./R;
36 % Mean percentage error
37 MPE = nanmean(percError,2);
38 % Mean absolute percentage error
39 MAPE = mean(abs(percError),2);
40 % Mean absolute scaled error
41 MASE = bsxfun(@rdivide,MAE,mean(abs(diff(R')))');
42

43 errorStats = table(ME,RMSE,MAE,MPE,MAPE,MASE,...
44 'VariableNames',errorNames);
45 end % vecAutoreg

2.1.3.2 getOptimalLag

1 function p = getOptimalLag(obj,minLag,maxLag)
2 % Function to find optimal lag
3 % Error if minLag is greater then maxLag
4 if minLag > maxLag
5 error('Minimum lag is greater than maximum lag.');
6 end
7 % Initialise variables
8 allLag = (minLag:maxLag)';
9 stats = [allLag zeros(size(allLag,1),2)];

10 stability = zeros(size(allLag,1),1);
11 % Loop through differest lags to get stability and statistics
12 for i = allLag'
13 % Get the covariance matix from vector autoregression
14 [BHat,˜,SigmaHat] = vecAutoreg(obj,i);
15 % Get statistics
16 stats(i,2) = obj.statAIC(SigmaHat,i);

30

17 stats(i,3) = obj.statSC(SigmaHat,i);
18 % Get stability
19 stability(i) = obj.stabCond(BHat);
20 end
21 % Delete instable lags
22 stats(stability==0,:) = [];
23 % Get the minimum statistic
24 [˜,lagAICIndex] = min(stats(:,2));
25 [˜,lagSCIndex] = min(stats(:,3));
26 % Ouput the right lag
27 if lagAICIndex == lagSCIndex
28 p = stats(lagAICIndex,1);
29 else
30 % Give priority to the AIC test
31 if stats(lagAICIndex,2) < stats(lagSCIndex,3)
32 p = stats(lagAICIndex,1);
33 else
34 p = stats(lagSCIndex,1);
35 end
36 end % if−else
37 end % findOptimalLag

2.1.3.3 stabCond

1 function stable = stabCond(obj,BHat)
2 % Stability condition
3 % Get p
4 p = (size(BHat,2)−1)/obj.numSeries;
5 % Initialise stability to 1
6 stable = 1;
7 % Check for each BHatˆp the absolute values of the eigenvalues
8 for i = 1:p
9 % Get the eigenvalues

10 eValues = ...
11 eig(BHat(:,2+(i−1)*obj.numSeries:1+i*obj.numSeries));
12 % Check if absolute value of any eValues > 1
13 if any(abs(eValues) > 1)
14 stable = 0;
15 disp([num2str(i) '−th lag has unstable eigenvalues']);
16 end %if
17 end
18 end % stabCond

2.1.3.4 statAIC

1 function statistic = statAIC(obj,SigmaHat,p)
2 % Akaike information criterion
3 % log(|SigmaHat |) + 2*(n*(n*p+1))/T
4 T = (obj.numTimes−1) − p;
5 statistic = log(det(SigmaHat)) +...

31

6 2*(obj.numSeries*(obj.numSeries*p + 1))/T;
7 end % statAIC

2.1.3.5 statSC

1 function statistic = statSC(obj,SigmaHat,p)
2 % Schwartz criterion or Bayesian information criterion
3 % log(|SigmaHat |) + (n*(n*p+1))/T*log(T)
4 T = (obj.numTimes−1) − p;
5 statistic = log(det(SigmaHat)) +...
6 (obj.numSeries*(obj.numSeries*p + 1))...
7 /T*(log(T));
8 end % statSC

2.1.4 JCData

1 classdef JCData
2 % cointJCData holds all the necessary data from the Johansen's test
3

4 properties
5 time % Time
6 multiSeries % Holds all the time series including ones
7 maxRank % Maximum rank
8 alpha % Cointegration alpha
9 beta % Cointegration weights

10 residuals % residualss from the cointegrated weights
11 otherData % rank, h, pval, stat, cval, eigval
12 eigVal % Eigenvalue
13 end % properties
14

15 methods
16 %%−−−
17 % Constructor−−
18 function obj = JCData(time,multiSeries,varargin)
19 % Initialise time series variables
20 obj.time = time;
21 numTimes = size(multiSeries,1);
22 numSeries = size(multiSeries,2);
23 obj.multiSeries = [ones(numTimes,1) multiSeries];
24

25 % Run the Johansen's test for both trace and maxeig
26 [h,pValue,stat,cValue,mles] = jcitest(...
27 multiSeries,'test',{'trace','maxeig'},varargin{:});
28

29 % Get the ranks of matrix
30 traceRank = sum(h{1,:});
31 maxEigRank = sum(h{2,:});
32

33 % Display results
34 disp(['Trace test: The null hypothesis for r = '...

32

35 num2str(traceRank) ' was not rejected.']);
36 disp(['Max eigenvalue test: The null hypothesis for r = '...
37 num2str(maxEigRank) ' was not rejected.']);
38

39 % Get the maximum rank out of the two tests
40 obj.maxRank = max(traceRank,maxEigRank);
41

42 % Get alpha and beta where beta includes the intercept
43 obj.alpha = mles{1,obj.maxRank+1}.paramVals.A;
44 obj.beta = [mles{1,obj.maxRank+1}.paramVals.c0';...
45 mles{1,obj.maxRank+1}.paramVals.B];
46

47 % Get residuals
48 obj.residuals = obj.multiSeries*obj.beta;
49

50 % Get the eigenvalues
51 obj.eigVal = zeros(numSeries,1);
52 for i = 1:numSeries
53 obj.eigVal(i) = mles{1,i}.eigVal;
54 end
55

56 % Get other data
57 obj.otherData = cell(2,2);
58 obj.otherData{1,1} = 'Trace test';
59 obj.otherData{2,1} = 'Max eigenvalue test';
60 dataNames = {'rank','nullRejected','pValue','stat',...
61 'cValue','eigVal'};
62 for i = 1:2
63 obj.otherData{i,2} = table((0:numSeries−1)',h{i,:}',...
64 pValue{i,:}',stat{i,:}',cValue{i,:}',obj.eigVal,...
65 'variableNames',dataNames);
66 end
67

68 % Plot
69 obj.plot;
70

71 end % Constructor
72

73 %%−−−
74 % Plotting function−−
75 function plot(obj)
76

77 figHandle = figure;
78 plot(obj.time,obj.residuals);
79 title('Cointegration residuals');
80 xlabel('Time');
81 yLimits = ylim;
82 axis([obj.time(1),obj.time(end),yLimits(1),yLimits(2)]);
83 changeFig(figHandle);
84 datetick('x','yyyy','keeplimits','keepticks')
85

86 end % plot
87

88 %%−−−
89 % Function to do the Augmented Dickey Fuller test−−−−−−−−−−−−−−−−−−
90 function [h,pValue,stat,cValue,reg] = adftest(obj,varargin)

33

91

92 id = 'econ:adftest:LeftTailStatTooSmall';
93 warning('off',id);
94

95 numSeries = size(obj.residuals,2);
96

97 % If no series as input then run adftest on every series
98 if nargin == 1
99 % Initialise variables

100 h = cell(1,numSeries);
101 pValue = cell(1,numSeries);
102 stat = cell(1,numSeries);
103 cValue = cell(1,numSeries);
104 reg = cell(1,numSeries);
105 % Loop through each series to run adftest
106 for i = 1:numSeries
107 [h{i},pValue{i},stat{i},cValue{i},reg{i}] = adftest(...
108 obj.residuals(:,i));
109 end
110

111 % If a series is given to run adftest on
112 elseif nargin == 2
113 % Data validation
114 if varargin{1} < 1 | | varargin{1} > obj.numSeries
115 error('Input series is not available.');
116 end
117 % Run adftest on that series
118 [h,pValue,stat,cValue,reg] = adftest(...
119 obj.residuals(:,varargin{1}));
120

121 % Otherwise too many inputs
122 else
123 warning('on',id);
124 error('Too many input arguments.');
125 end
126 warning('on',id);
127

128 end % adftest
129

130 end % methods
131

132 end % classdef

2.1.5 BacktestCoint

1 classdef BacktestCoint
2 % BacktestCoint class to hold the stationary time series and do
3 % backtesting and calculating P&L
4

5 properties
6 time % Times corresponding to time series
7 residuals % Time series of residuals
8 theta % theta from OU process

34

9 mu % mu from OU process
10 sigmaOU % sigma from OU process
11 sigmaEq % sigma from equilibrium for entry/exit
12 halfLife % half life tau calculated from theta
13 btData % Backtesting data
14 sigmaOptimal % Optimal sigma (bounds for entry/exit)
15

16 end % properties
17

18 methods
19 %%−−−
20 % Constructor−−
21 function obj = BacktestCoint(time,residuals)
22 obj.time = time;
23 % Set the residuals
24 obj.residuals = residuals;
25 % Regress on the residuals with one lag
26 mdl = fitlm(obj.residuals(1:end−1),obj.residuals(2:end));
27 A = mdl.Coefficients.Estimate(1);
28 B = mdl.Coefficients.Estimate(2);
29 % Set the OU process constants, sigmaEq and halfLife
30 tau = 1/252;
31 obj.theta = −log(B)/tau;
32 obj.mu = A/(1−B);
33 obj.sigmaOU = sqrt(2*obj.theta*var(mdl.Residuals.Raw)...
34 /(1−exp(−2*obj.theta*tau)));
35 obj.sigmaEq = obj.sigmaOU/sqrt(2*obj.theta);
36 obj.halfLife = log(2)/obj.theta;
37 end % Constructor
38

39 %%−−−
40 % Plotting−−−
41 function plot(obj)
42 % Sample path
43 tau = 1/252;
44 samplePath = obj.sigmaOU*sqrt((1−exp(−2*obj.theta*tau))...
45 /(2*obj.theta))*randn(size(obj.residuals));
46 samplePath(1) = obj.residuals(1);
47 for i = 2:size(samplePath,1)
48 samplePath(i) = samplePath(i−1)*exp(−obj.theta*tau) + ...
49 obj.mu*(1−exp(−obj.theta*tau)) + samplePath(i);
50 end
51

52 % Plotting
53 figHandle = figure;
54 hold on;
55 plot(obj.time,samplePath,'y');
56 plot(obj.time,obj.residuals);
57 plot(obj.time,obj.mu*ones(size(obj.residuals,1),1),'g');
58 plot(obj.time,...
59 (obj.mu+obj.sigmaEq)*ones(size(obj.residuals,1),1),'r');
60 plot(obj.time,...
61 (obj.mu−obj.sigmaEq)*ones(size(obj.residuals,1),1),'r');
62 hold off;
63 legend('Sample path','Residual','\mu','\mu\pm\sigma {Eq}'...
64 ,'location','southeast');

35

65 xlabel('Time');
66 ylabel('Residual spread');
67 yLimits = ylim;
68 changeFig(figHandle);
69 axis([obj.time(1),obj.time(end),yLimits(1),yLimits(2)]);
70 datetick('x','yyyy','keeplimits','keepticks')
71

72 end % plot
73

74 %%−−−
75 % Function to backtest−−−
76 function obj = backtest(obj,varargin)
77

78 numStrats = 3;
79 tempCell = cell(2,numStrats);
80 rowNames = {'sigmaEq';'optimalSigma'};
81 variableNames = cell(1,numStrats);
82 obj.sigmaOptimal = zeros(1,numStrats);
83 for i = 1:3
84 tempCell{1,i} = BacktestData(obj.sigmaEq,...
85 obj.mu,obj.time,obj.residuals,i);
86 obj.sigmaOptimal(1,i) = obj.getOptimalSigma(i);
87 tempCell{2,i} = BacktestData(obj.sigmaOptimal(1,i),...
88 obj.mu,obj.time,obj.residuals,i);
89 variableNames{1,i} = ['Strategy' num2str(i)];
90 end
91

92 obj.btData = cell2table(tempCell,'rowNames',rowNames,...
93 'variableNames',variableNames);
94

95 end % backtest
96

97 %%−−−
98 % Function to get the optimal sigma−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 sigma = getOptimalSigma(obj,varargin)

100

101 end % methods
102

103 end % classdef

2.1.5.1 getOptimalSigma

1 function sigma = getOptimalSigma(obj,varargin)
2 % Function to get the optimal sigma
3

4 % Make the objective function
5 objFunc = @(sigma) optimiseSigma(sigma,obj.mu,obj.residuals,varargin{:});
6 % Get the optimal sigma
7 sigma = fminsearch(objFunc,obj.sigmaEq);
8

9 end % getOptimalSigma

36

2.1.5.2 optimiseSigma

1 function optimiseVal = optimiseSigma(sigma,mu,residuals,varargin)
2 % Function to optimise sigma
3 positionArray = getPosition(sigma,mu,residuals,varargin{:});
4

5 % pnl array
6 pnlArray = cumsum(diff(residuals).*positionArray);
7

8 [˜,maxDrawdown] = getUnderwater(pnlArray);
9

10 % Optimise value of profit at the end and max drawdown
11 optimiseVal = pnlArray(end)/maxDrawdown;
12

13 end % optimiseSigma

2.1.6 BacktestData

1 classdef BacktestData
2 % Backtest data container
3

4 properties
5 time % Time
6 position % Time series of position on the spread
7 pnl % P&L from the position
8 underwater % Underwater time series
9 maxDrawdown % Maximum drawdown

10 backtestScore % End pnl/maxdrawdown
11 cumTransactions % Cumulative transactions
12 pnlIncTrans % P&L including transaction costs
13 end % properties
14

15 methods
16 %%−−−
17 % Constructor−−
18 function obj = BacktestData(sigma,mu,time,residuals,strat)
19 obj.time = time(2:end);
20 % Get position and P&L
21 obj.position = getPosition(sigma,mu,residuals,strat);
22 obj.pnl = cumsum(diff(residuals).*obj.position);
23

24 % Get underwater and max drawdown
25 [obj.underwater,obj.maxDrawdown] = getUnderwater(obj.pnl);
26

27 % Get backtestScore
28 obj.backtestScore = −obj.pnl(end)/obj.maxDrawdown;
29

30 % Get cumTransactions
31 obj.cumTransactions = zeros(size(obj.position));
32 tempArray = obj.position(2:end) ˜= obj.position(1:end−1);
33 obj.cumTransactions = [0;cumsum(tempArray)];

37

34

35 disp(['Backtesting score: ' num2str(obj.backtestScore)]);
36

37 % Plot
38 obj.plot(sigma,mu,residuals);
39

40 end % Constructor
41

42 %%−−−
43 % Plotter−−
44 function plot(obj,sigma,mu,residuals)
45

46 figHandle = figure;
47 % Title
48 annotation('textbox',[0 0.9 1 0.1],'String',...
49 ['Backtest Score = ' num2str(obj.backtestScore,'%.2f')...
50 ', \sigma = ' num2str(sigma,'%.4f') ', End P&L = '...
51 num2str(obj.pnl(end),'%.2f') ', Max Drawdown = ' ...
52 num2str(obj.maxDrawdown,'%.2f')],...
53 'EdgeColor','none','HorizontalAlignment','center');
54 % Plot the residuals and the position
55 subplot(2,1,1);
56 hold on;
57 plot(obj.time,residuals(2:end),'b');
58 plot(obj.time,mu+sigma*obj.position,'r');
59 hold off;
60 legend('Residuals','Position','location','northwest');
61 xlabel('Time');
62 yLimits = ylim;
63 changeFig(figHandle);
64 axis([obj.time(1),obj.time(end),yLimits(1),yLimits(2)]);
65 datetick('x','yyyy','keeplimits','keepticks')
66

67 % Plot the P&L and the underwater chart
68 subplot(2,1,2);
69 hold on;
70 plot(obj.time,obj.pnl,'b');
71 fillHandle = fill([obj.time;flipud(obj.time)],...
72 [obj.underwater;zeros(size(obj.time))],'r');
73 set(fillHandle,'EdgeColor','None');
74 hold off;
75 legend('P&L','Underwater','location','northwest');
76 xlabel('Time');
77 yLimits = ylim;
78 changeFig(figHandle);
79 axis([obj.time(1),obj.time(end),yLimits(1),yLimits(2)]);
80 datetick('x','yyyy','keeplimits','keepticks')
81

82 end % plot
83

84 %%−−−
85 % Transaction Costs Analysis−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 obj = adjustForTrans(obj,flatFee)
87

88

89 end % methods

38

90

91 end % classdef

2.1.6.1 adjustForTrans

1 function obj = adjustForTrans(obj,flatFee)
2 % Function to analyse transaction costs
3

4 % Orientate the flatFee array
5 if size(flatFee,1) ˜= 1
6 flatFee = flatFee';
7 end
8

9 % Calculate transaction costs
10 adjFactor = −kron(abs(diff(obj.position)),flatFee);
11 % Calculate the P&L including transaction costs
12 obj.pnlIncTrans = [zeros(1,size(flatFee,2));cumsum(bsxfun(...
13 @plus,adjFactor,diff(obj.pnl)))];
14

15 % Display no fee backtest score
16 disp(['No fee − Backtest score = ' num2str(obj.backtestScore)]);
17

18 % For loop to display backtest scores
19 for i = 1:size(flatFee,2)
20 % Get max drawdown
21 [˜,tempMaxDrawdown] = getUnderwater(obj.pnlIncTrans(:,i));
22 % Display backtest score for each fee
23 disp(['Fee = ' num2str(flatFee(1,i)) ' − Backtest score = '...
24 num2str(−obj.pnlIncTrans(end,i)/tempMaxDrawdown)]);
25 end
26

27 % Plotting
28 figHandle = figure;
29 hold on;
30 plot(obj.time,obj.pnl);
31 legendStr = cell(1,size(obj.pnlIncTrans+1,2));
32 legendStr{1} = 'No fee';
33 for i = 1:size(obj.pnlIncTrans,2)
34 plot(obj.time,obj.pnlIncTrans(:,i));
35 legendStr{i+1} = ['Fee = ' num2str(flatFee(1,i))];
36 end
37 hold off;
38 legend(legendStr,'location','northwest');
39 xlabel('Time');
40 ylabel('P&L');
41 yLimits = ylim;
42 changeFig(figHandle);
43 axis([obj.time(1),obj.time(end),yLimits(1),yLimits(2)]);
44 datetick('x','yyyy','keeplimits','keepticks')
45

46 end % adjustForTrans

39

2.1.6.2 getPosition

1 function positionArray = getPosition(sigma,mu,residuals,varargin)
2 % Function to get the positions for different stategies
3

4 % If no input strategy then default
5 if nargin == 3
6 strategy = 1;
7 elseif nargin == 4
8 strategy = varargin{1};
9 elseif nargin > 4

10 error('Too many input arguments.');
11 end
12

13 % Calculate position array depending on strategy
14 switch strategy
15 % Strategy one
16 case 1
17 % long short position array
18 positionArray = zeros(size(residuals,1)−1,1);
19 for i = 2:size(positionArray,1)
20 if positionArray(i−1) == 0
21 if residuals(i) < mu − sigma
22 positionArray(i) = 1;
23 elseif residuals(i) > mu + sigma
24 positionArray(i) = −1;
25 else
26 positionArray(i) = positionArray(i−1);
27 end
28 elseif positionArray(i−1) == 1
29 if residuals(i) > mu
30 positionArray(i) = 0;
31 else
32 positionArray(i) = positionArray(i−1);
33 end
34 elseif positionArray(i−1) == −1
35 if residuals(i) < mu
36 positionArray(i) = 0;
37 else
38 positionArray(i) = positionArray(i−1);
39 end
40 end
41 end
42

43 % Strategy 2
44 case 2
45 % long short position array hold from +sigma to −sigma and vice
46 % versa
47 positionArray = zeros(size(residuals,1)−1,1);
48 for i = 2:size(positionArray,1)
49 if positionArray(i−1) == 0
50 if residuals(i) < mu − sigma
51 positionArray(i) = 1;
52 elseif residuals(i) > mu + sigma

40

53 positionArray(i) = −1;
54 else
55 positionArray(i) = positionArray(i−1);
56 end
57 elseif positionArray(i−1) == 1
58 if residuals(i) > mu + sigma
59 positionArray(i) = 0;
60 else
61 positionArray(i) = positionArray(i−1);
62 end
63 elseif positionArray(i−1) == −1
64 if residuals(i) < mu − sigma
65 positionArray(i) = 0;
66 else
67 positionArray(i) = positionArray(i−1);
68 end
69 end
70 end
71

72 % Strategy 3
73 case 3
74 % long short position array hold from +sigma to −sigma and vice
75 % versa and aggresive
76 positionArray = zeros(size(residuals,1)−1,1);
77 for i = 2:size(positionArray,1)
78 if positionArray(i−1) == 0
79 if residuals(i) < mu − sigma
80 positionArray(i) = 1;
81 elseif residuals(i) > mu + sigma
82 positionArray(i) = −1;
83 else
84 positionArray(i) = 0;
85 end
86 elseif positionArray(i−1) > 0
87 if residuals(i) > mu + sigma
88 positionArray(i) = 0;
89 elseif residuals(i) < mu + −positionArray(i−1)*sigma
90 positionArray(i) = positionArray(i−1) + 1;
91 else
92 positionArray(i) = positionArray(i−1);
93 end
94 elseif positionArray(i−1) < 0
95 if residuals(i) < mu − sigma
96 positionArray(i) = 0;
97 elseif residuals(i) > mu + −positionArray(i−1)*sigma
98 positionArray(i) = positionArray(i−1) − 1;
99 else

100 positionArray(i) = positionArray(i−1);
101 end
102 end
103 end
104

105 end % switch
106

107 end % getPosition

41

2.1.6.3 getUnderwater

1 function [underwater, maxDrawdown] = getUnderwater(pnlArray)
2 % Function to get underwater and maximum drawdown
3

4 % Get the high watermark
5 highWatermark = cummax(pnlArray);
6 % Calculate the underwater array
7 underwater = min(pnlArray−highWatermark,0);
8 % Calculate the maximum drawdown
9 maxDrawdown = min(underwater);

10

11 end % getUnderwater

42

	Time Series
	Code Overview
	In-depth Learning
	Notation
	Vector Autoregression
	Optimal Lag Selection
	Stability Condition
	Augmented Dickey-Fuller Test
	Johansen's Procedure

	Cointegration and Statistical Arbitrage
	Backtesting
	Strategy 1
	Strategy 2
	Strategy 3
	Transaction Costs Analysis

	Further Considerations

	Appendix
	Time Series Code
	testScript
	TimeSeries
	TimeSeriesCollection
	vecAutoReg
	getOptimalLag
	stabCond
	statAIC
	statSC

	JCData
	BacktestCoint
	getOptimalSigma
	optimiseSigma

	BacktestData
	adjustForTrans
	getPosition
	getUnderwater

