
M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Asynchronous Parallel Numerical Optimization

by

Joy Tolia

MA469 Fourth Year Project

Submitted to The University of Warwick

Mathematics Institute

March, 2015

Abstract

This work examines the process of unconstrained optimization, using ideas based
on genetic algorithms such as different breeding types; mutation and crossover. We
look at numerical methods which are not gradient based to allow for highly non smooth
continuous function optimization. We will assume, as is often the case in scientific
computing, that the function evaluation takes a lot of time and therefore we want to
parallelize that part of the algorithm.

This uses the master-worker paradigm where the workers run in parallel and their
only job is function evaluation. The master does everything else such as population
generation. We make the algorithm asynchronous by starting a new generation before
gaining all the information from the previous generation. Then we implement this
algorithm in MATLAB using SPMD and apply it to a set of test functions to study
various parameters.

We conclude for the functions we have tested, that the asynchronous model works
well with the breeding type mutation but not so well with crossover. We then examine
a higher dimensional function where we learn more about the decay of jump sizes in
mutation. Finally we explore using both breeding types, crossover and mutation,
together.

Contents

1 Introduction 1
1.1 Optimization . 1
1.2 Genetic Algorithm . 1
1.3 Asynchronous Parallel Algorithm . 3

2 Algorithms 6
2.1 Generating Population . 8

2.1.1 Breeding . 9
2.2 Fading Memory or Priority to the Latest Generation 11
2.3 Termination Criteria . 12
2.4 Implementation . 13

3 Testing 14
3.1 Number of Workers . 14

3.1.1 Analysis . 15
3.2 Description of the Testing . 16
3.3 Fading Memory or Priority to the Latest Generation - Mutation 18
3.4 Number of Elements Needed to Evaluate Before Starting a New Generation

- Mutation . 28
3.5 Size of xBest - Mutation . 38
3.6 Number of Elements Needed to Evaluate Before Starting a New Generation

- Crossover . 48
3.7 Size of xBest - Crossover . 58
3.8 Higher Dimensional Optimization . 67

4 Conclusion 72
4.1 Results . 72
4.2 Further Investigation That Can Be Made 72

ii

5 Appendix 74
5.1 Code . 74

5.1.1 Main Script . 74
5.1.2 Population Generation . 79
5.1.3 Random Population Generation . 79
5.1.4 Breeding . 80
5.1.5 Picking Element to Evaluate . 81
5.1.6 Function Evaluation . 82

5.2 Test Functions . 83
5.2.1 Ackley’s Function: R2 → R . 83
5.2.2 Sphere Function R2 → R . 83
5.2.3 Rosenbrock Function R2 → R . 84
5.2.4 Beale’s Function R2 → R . 84
5.2.5 Levi Function R2 → R . 85
5.2.6 Easom Function R2 → R . 85
5.2.7 Holder Table Function R2 → R . 86
5.2.8 Rastrigin Function Rd → R . 86
5.2.9 Sample Paths for the Test Functions 87

Acknowledgements

I would like to express my deepest gratitude to my project supervisor Tim Sullivan for
helping and guiding me throughout this project. I am grateful for all the support from
my fellow undergraduates, especially Rosie Ferguson, Calvin Khor, Tom Reddington and
Jack Betteridge. I would like to extend my appreciation to my family for their help and
encouragement.

iii

1 Introduction

1.1 Optimization

Let us first start with optimization, we look at finding the minima and minimizers of

functions. Let f : D → R be a function where D ⊂ Rd for some d ∈ N with at least one

global minimum. We will make an assumption that D ⊂ Rd is compact. The problem is

to find a point in the domain that minimizes the function, we want to find x? ∈ D so that:

x? = argmin
x∈D

f (x)

There is also constrained optimization, where we are doing the above and the domain is

also restricted (possibly in multiple ways) with the following constraints:

gi(x) = ci for i = 1, . . . , n

hj(x) ≥ dj for i = 1, . . . ,m

where gi, hj : Rd → R for i = 1, . . . , n and j = 1, . . . ,m for n,m ∈ N.

In this project we will only be looking at unconstrained optimization. We want to focus

on using numerical methods to find minimums of functions. One of the ways we can do

this is by using ideas from a certain class of algorithms called genetic algorithms. This

class of algorithms is very useful as gradient based methods tend to fail in the case of

highly non-smooth functions.

1.2 Genetic Algorithm

Genetic algorithms are based on the process of evolution, the structure is explained in

[1]. We start with a population which is a set of elements then we make a new generation

by breeding the fittest elements. Each increase in generation should help us get a fitter

population. The fitness of an element is calculated using an objective function. In our

case we will have a random set of points in D as our initial population. Then we use an

optimization algorithm on those points to get a new population. For example choosing

the best two points who give the lowest value of the function and finding random points

around these to make a new population. Our objective function will be the minimizing

function. We will use the following notation, where we are trying to optimize the function

f :

f : D → R, D ∈ Rd

1

Xi =

...

...

x
(i)
1 . . . x

(i)
p

...
...

 ∈ Rd×p

Where p is the size of the population, x
(i)
1 , . . . , x

(i)
p ∈ D and Xi is the population for the

i-th iteration. P : Rd×p × R1×p → Rd×p is the population generating function which will

use some kind of breeding process to make a new population of elements given the previous

generation. Algorithm 1.1 shows how we can use genetic algorithms for optimization.

Algorithm 1.1 Optimization Genetic Algorithm

Input: X0

Output: X

Initialise X = (x1, . . . , xp) = X0 ∈ Rd×p

Initialise E = (e1, . . . , ep) ∈ R1×p

while Termination not reached do

for j = 1 ≤ p do

ej = f (xj)

end for

Check for termination

X = P (X,E)

end while

Figure 1 is the flow chart for Algorithm 1.1.

Initialization
Population

Generation

Evaluation Termination Stop

No

Yes

Figure 1: Flow chart for optimization genetic algorithm

We will assume, as is often the case in scientific computing, that the evaluation part of

the algorithm takes a lot more time than population generation and constraints. So we

want to try and work around that. Suppose we can run the evaluation in parallel then we

could speed up our algorithm, for example if the evaluation is an expensive PDE solver

then parallelising would give us a significant speed up. As displayed in Figure 1, we have

2

to wait for the whole population to be evaluated before we can start a new generation.

This is obviously very costly in terms of time. To work around this, we can start a new

generation once a certain number of elements have been evaluated. This would give us

less information from each generation as fewer elements are evaluated. However, we reach

a higher number of generations which could mean that we find the minimum faster. We

would like to study whether doing this makes our algorithm faster than an algorithm where

a full population is evaluated before starting the next generation.

1.3 Asynchronous Parallel Algorithm

Let us first look at the algorithm we are working with. We split the cores of our computer

into one master and the rest workers, explained further in [2]. The master is in charge

of generating the population, sending and receiving messages to and from the workers

and storing work. The sole purpose of the workers is to do the work sent by the master.

The algorithm is based on communication to and from the workers and the master. The

workers never have to communicate with each other. In our case the work that the workers

will be doing is evaluating a function for a given element.

This is better than the alternative of not having a master and using a peer to peer system

where information is communicated between all workers. Because it reduces the size of

communications by keeping all the information in one core (master) and sending as little

information as possible to the other cores (workers). For us the information would be the

population from the different generations. This also avoids two workers doing the same

work in the case where relevant information was not communicated in time. The downside

is that the master could be idle a lot of the time whilst waiting for the workers to send

back work.

We will first look at a very general asynchronous parallel algorithm not necessarily for

optimization. Algorithm 1.2 is the algorithm for the master.

3

Algorithm 1.2 Asynchronous Parallel Master Code

Generate initial population

while Termination is not reached do

Receive message from any worker

if Worker requested work then

if Check there is work to give out then

Send work to that worker

else

Send stop message to the worker

end if

else if Worker sent finished work then

Store the finished work

Check termination condition

if Termination reached then

Send stop message to the worker

end if

if Enough work has been received to generate the next then

Generate a new generation of population

end if

else if Worker has received stop message then

Once all workers send this message, termination is reached

end if

end while

The different parameters we can work with here are the number of workers, how to pick

an element for evaluation and how much work needs to be done before we start a new

population. Algorithm 1.3 is the algorithm for the worker.

Algorithm 1.3 Asynchronous Parallel Worker Code

while Stop message is not reached do

Send message to master requesting work

Receive message from master

if Work is received then

Do work

Send finished work back to the master

else if Stop message is received then

Termination for worker is reached

end if

end while

4

This is parallel is because the workers can all do work at the same time. The sending and

receiving of messages is not parallel however once the workers have received their work,

they can all be working in parallel. The asynchronicity comes from the fact that we don’t

wait for all the work to be received back from the current population before making the

next generation and work is started on that generation as soon as it is made.

5

2 Algorithms

Let us start by looking at the algorithm for asynchronous parallel numerical optimization.

We are now in the master-worker paradigm. The following is the flow chart for the master:

Figure 2: Algorithm for master for optimization

Receive message

from worker

Receive eval-

uated element

Update xBest

Check for

termination

Send message to

worker to stop

Check if enough

evaluations are

received to make

a new population

Generate new

population

Asking for an

element for

evaluation

Check if termi-

nation is reached

Find an element

to be evaluated

Send that

element to

the worker

Worker has

stopped

Check if all work-

ers have stopped

Stop

Yes No

No

Yes

Yes

No
Yes

No

6

The following is the flowchart for the worker:

Figure 3: Algorithm for worker for optimization

Send message to

master asking

for an element

to be evaluated

Receive message

from master

Recieve element

for evaluation

Evaluate

the element

Send the eval-

uated element

to master

Asking to be

terminated

Send message

to master that

this worker

is terminated

Stop

xBest is what stores the fittest elements (which for us are the elements with the low-

est evaluated values) throughout the algorithm. From Figure 2, some of the potential

parameters to analyse are:

• Number of workers.

• Number of elements in xBest, we do this as a ratio of the population size.

• Number of elements we need to evaluate before we can start the next generation,

again we do this as a ratio of the population size.

• The process of finding an element to be evaluated, this is where we introduce how

much priority is given to the latest generation.

7

We also have some important parts of the algorithms to discuss which are:

• How doe we generate the new population?

• What are the termination criteria?

2.1 Generating Population

We use xBest to generate part of our population and the rest we pick uniformly random

points in the domain. We will use xBest to keep track of the fittest elements. We update

the xBest when elements are evaluated and when enough elements have been evaluated,

we use the updated xBest to generate part of our population. In this project, the number

of elements in the population made from the xBest will exactly be the number of elements

in xBest i.e. the size of xBest.

Firstly, let us look at the bigger picture and study how we generate a new population and

then we will analyse the details about how we breed elements from xBest. Figure 4 shows

how we use xBest together with the evaluated elements to make a new xBest from which

we then make a new population.

Figure 4: Generating a new population; Gk represents k−th generation

X(i−1)

X(i)

X(i+1)

Population X(k) made for Gk

Evaluated elements

xBest from Gi−1

xBest from Gi

Population made from xBest

Population made from ran-

dom points

Once the population is made, it needs to be randomly permuted, this is because when we

choose an element for evaluation, we choose the first element in the population that has

not been evaluated or is not currently being evaluated. When the population is made,

the first part of the population is made from the xBest and the rest are random points

8

in the domain. This means that if the population is not permuted randomly and if the

number of elements needing to start the next generation is smaller than the size of the

xBest then the algorithm will only ever evaluate the elements of the population which are

made from the xBest. This would mean we could get stuck in local minimas easily or as

the initial xBest is made from the initial population, we might have our xBest very far

from the global minimum hence we might never reach it as we are never evaluating the

random elements in our population and the elements made from xBest are very close to

xBest. This can be seen more clearly in Figure 5.

Figure 5: Explanation of the problem when not randomising the population

Xold

Xnew

Population

Evaluated elements

Population made form xBest

old xBest

Updated xBest

Population made from ran-

dom points

2.1.1 Breeding

There are two ways we can breed from xBest; mutation and crossover. Mutation is where

we take a random jump from each element in xBest to get a new element. Crossover is

where we take two or more parent elements from xBest and make a child element with a

method that encodes information about the parent elements.

The jump function gives us a random element close to the element we started with. We

will use the method in Algorithm 1.4.

9

Algorithm 1.4 jump (Making a jump for our element)

Input: x (one element in xBest), genNumber (the generation iteration we are in), bounds

(of our domain)

Output: y

d = dimension of x

for i = 1 : d do

Sample r from a standard normal distribution

r = r×temperature(genNumber)

yi = xi + r

if yi outside bounds then

Set y as the respective bound

end if

end for

We want to assume that as the number of generations increases, we are getting closer to

the minimum and hence we want to take smaller jumps to get closer to the true minimum.

The temperature function is used to make smaller jumps as the number of generations

increases. We use the following simple temperature function:

temperature (n) =
1

10× n

The other method of breeding we shall discuss, is crossover. The method we will use

is fitting a Gaussian distribution to the elements in xBest and then sampling from this

distribution. This is a crossover method because we are encoding information from all the

parent elements to produce the child element. We do this by calculating the mean and

the standard deviation of the elements in xBest which we then use as the mean and the

standard deviation of the Gaussian distribution to sample from.

An issue that needs to be considered is when we have multiple global minima which are

far apart as this will give a Gaussian distribution with the mean not close to any of the

minima, making it difficult to converge to one of the minima. There are some methods

to help these types of situations. One of them is using a Gaussian mixture model to

sample from. This is when we have multiple Gaussian distributions added up together

and rescaled to form the Gaussian mixture model. However it is difficult to calculate

the number of components of the Gaussian mixture model from a given data set, more

information on some of these methods is given in [3].

10

2.2 Fading Memory or Priority to the Latest Generation

We want to see if giving priority to the latest generation’s population for element evaluation

makes any changes to our convergence to the minimum. As our algorithm is asynchronous,

we can pick an element from any generation for evaluation, as long as they have not all

been evaluated. We would like to build a probability measure that we can sample from.

We do this using the geometric distribution which we then truncate and rescale to form a

distribution on a finite state space. Given p ∈ [0, 1], this is defined by a discrete probability

measure µ : N0 := {0, 1, 2, . . . } → [0, 1] by:

µ (n) = p (1− p)n , n ∈ N0

Suppose the latest generation is N ∈ N0. Then we have:

µ

(
N⋃
i=0

{i}

)
=

N∑
i=0

µ (i)

=
N∑
i=0

p (1− p)i

=
p
[
1− (1− p)N+1

]
1− (1− p)

= 1− (1− p)N+1

Let us define P : {0, 1, . . . , N} → [0, 1] by:

P [n] =
µ (N − n)

1− (1− p)N+1
=

p (1− p)N−n

1− (1− p)N+1
, n ∈ {0, 1, . . . , N}

This is a discrete probability measure because P [{0, 1, . . . , N}] = 1 by construction and

the additivity of P holds by the additivity of µ. Sampling from the distribution generated

by the measure P is exactly what we want to use to choose what generation we want

to evaluate from, given the priority probability p. We can see how this in implemented

in Section 5.1.5. When p = 1 we always pick an element from the latest generation

for evaluation. Figures 6-9 show histograms of sampling from P with different priority

probabilities.

11

Figure 6: 1× 106 samples from the mea-
sure P with priority probability of 0.25
and latest generation 100

Figure 7: 1× 106 samples from the mea-
sure P with priority probability of 0.5
and latest generation 100

Figure 8: 1× 106 samples from the mea-
sure P with priority probability of 0.75
and latest generation 100

Figure 9: 1× 106 samples from the mea-
sure P with priority probability of 1 and
latest generation 100

2.3 Termination Criteria

In finding the minimizers, we find the minima and vice versa. So without loss of generality,

we will find the minima in our implementation. There are multiple ways of checking for

termination. Here are some of the following:

1. Maximum number of generations

2. Maximum amount of time

3. Tolerance on absolute changes of successive elements of xBest

4. Tolerance on the absolute difference of evaluations of elements in xBest against a

given minimum (here we assume we already know the minimum)

As we will be testing our algorithms with test functions, we will know the minima apriori

so the termination criteria will be working with are (2) and (4) from the above list.

12

2.4 Implementation

This algorithm was implemented in MATLAB using the SPMD statement which lets you

run in parallel and has communication between the parallel workers in a similar way to

MPI in C. The code for this can be seen in Section 5.1.

13

3 Testing

3.1 Number of Workers

We will look at how long it takes to evaluate a function a certain number of times with

a given number of workers so we will not be looking at convergence results yet. Table 1

shows the different parameter we use to get the data.

Table 1: Parameters used to get the data

Distribution for the time it takes to evaluate the function max(N(1,1),0)

Number of workers 1-10

Repeats 5

Population size 50

Number of generations 100

Total number of evaluations 5000

This is the data we are getting:

Table 2: Times for 5000 Evaluations

Number of Workers 1 2 3 4 5

Time (×103 seconds) 5.2019 2.7354 1.8357 1.3898 1.1107

Number of Workers 6 7 8 9 10

Time (×103 seconds) 0.9216 0.7907 0.6922 0.6169 0.5556

Suppose we denote T (w) for w ∈ N as the time taken to evaluate the function 5000 times

by w number of workers.

Definition 1.1. We define the speed up S for w ∈ N workers by:

S (w) =
T (1)

T (w)

Definition 1.2. We define the efficiency E for w ∈ N workers by:

E (w) =
S(w)

w
=

T (1)

w × T (w)

Remark 1.3. As the name suggests, speed up tells us how much faster or slower our

algorithm runs given the number of workers. Efficiency can be thought of as the speed up

per worker.

14

Figure 10: Time take to evaluate the
function 5000 times

Figure 11: Speed up from increasing
number of workers

Figure 12: Efficiency from increasing
number of workers

3.1.1 Analysis

• We can see that the time for evaluation decreases as the number of workers increase

which means our parallelism is working well.

• We find that the speed up is linear which means our algorithm speeds up by the

number of numbers which is very good for us. This means that communication has

hardly any effect on the time it takes for our algorithm to run.

• In terms of efficiency, we can see that it is decreasing at first and then is nearly

constant after. This means our speed up per worker is decreasing at first and then

is constant, this is another indicator that the communication in our algorithm is not

becoming an issue when increasing the number of workers (up to 10). This might

be because to evaluate the function it takes approximately 1 second which will be

much bigger than any of the communication or serial part of our algorithm i.e. the

master’s algorithm.

15

• All of this means our parallelism is good and helpful in reducing the time to run our

algorithm.

3.2 Description of the Testing

For the rest of this section, we will adjust different parameters that we have and analyse

the results we get. We will be working with a set of test functions f : [−5, 5]2 ∈ R2 → R,

until the last subsection, which can be seen in the appendix.

We will be working with 8 different test functions, all which which can be seen in Sec-

tion 5.2. In Section 5.2.9, we can see different sample paths obtained from mutation

breeding. They give us an idea of how the algorithm moves around the domain searching

for minimizer. Table 3 explains why we use these functions.

Table 3: Description of the test functions

Function Description

1
This is a very thorny function with lots of local minima to

check if the algorithm gets stuck in the local minima.

2
This is a smooth function which should be easy to

optimize.

3
This is a shallow function and good for checking if the

algorithm gets stuck.

4 Similar to function 3 but has a different shape of the base.

5 This is a wavy function again with multiple local minima.

6
This is a mostly flat function with a small part which

drops to a minimum.

7
This function has multiple global minima near the

boundary of the domain and also has some local minima.

8

This is a multi dimensional function where we can define

the number of dimension of the domain, it has a lot of local

minima.

For the rest of this section, we will be adjusting different parameters and studying the

following properties:

1. Time taken for the algorithm to converge to a minimum or capped with a given time.

This will tell us if our algorithm is faster or slower when adjusting a parameter.

We should note, we that we average over all repeats, even if the repeat has not

converged to the minimum. In doing this, we implicitly penalise the repeat if it has

not converged as it will have reached the maximum time allowed for the algorithm

to run.

16

2. Number of generations reached by the algorithm. This will show us how many

generations were needed to get to for convergence to a minimum, if the algorithm

converged to a minimum. For different parameters, number of generations will have

similar or different relation with time taken.

3. Percentage of the repeats that the algorithm converged to a minimum. This will tell

us how often the algorithm is converging to the minimum for different parameters.

4. Error plots for different levels of a parameter for each function. Fixing the parameter

to a certain level and fixing the the function, we look at all the repeats that have

converged then look at the error of the repeat with the middle value in terms of

the number of generations reached and plot that. If there are no repeats that have

converged then nothing will be plotted. Here we can compare different levels of

a parameter by looking at the middle error decay of the algorithm for the given

function.

5. Error spread plots different levels of a parameter for each function. Again fixing

the parameter to a certain level and the function, we look at all the repeats that

have converged then look at maximum and minimum error of the repeat for each

generation and shade the region between. If there are no repeats that converged

then nothing will be plotted. If only one repeat converged then a line is plotted

instead of a region. From this we can see how much the error decay varies, when

lower, the information from the error decay is more accurate.

6. We can combine all the above properties to get information on how much different

levels of a parameter’s error decay overlap each other and from that we can pick

a level out of two which have similar error decays but one might converge to the

minimum faster than another on average or has a higher percentage of convergence

to a minimum.

17

3.3 Fading Memory or Priority to the Latest Generation - Mutation

Table 4: Parameters used to get the data

Ratio of xBest to the population size 0.5

Ratio of number of elements to evaluate before

starting a new generation to the population size
0.7

Number of workers 5

Repeats 20

Population size 50

Priority to the latest generation

0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8,

0.9, 1

Maximum Time 60 seconds

Tolerance 1× 10−6

Functions used 1, 2, 3, 4, 5, 6, 7

Breeding type Mutation

Figure 13: Results for adjusting the priority given the latest generation with mutation

Figure 13.a

18

Figure 13.b

Figure 13.c

19

• From Figure 13.a, we can see that the time taken for the algorithm for function 1

reduces with priority to te latest generation however for other functions, it is mostly

flat but increases past priority level of 0.7. We also have to remember that the

function here took very little time to evaluate but if we are working with functions

that take a lot of time to evaluate, the larger the ratio the longer it would take

run one generation, this means that between 0.4 and 0.6, the priority gives the best

results.

• Figure 13.c shows that all functions except function 1 converge nearly every time.

Function 1 has lower percentage of convergence from lower priority because it needs

information from the latest generation to jump out of local minimas.

• We can see, for most functions other than function 1, that the different priority

levels do not make too much of a difference in terms of time taken and percentage

of convergence.

• In conclusion, priority levels between 0.4 and 0.6 seem to give the best results for

most functions. However, for functions like function 1, it seems that the higher the

priority level, the better results are obtained.

Figure 14: Errors for adjusting the priority given the latest generation with mutation

Figure 14.a

20

Figure 14.b

Figure 14.c

21

Figure 14.d

Figure 14.e

22

Figure 14.f

Figure 14.g

23

Figure 15: Spread in error for adjusting priority given to the latest generation with mu-
tation

Figure 15.a

Figure 15.b

24

Figure 15.c

Figure 15.d

25

Figure 15.e

Figure 15.f

26

Figure 15.g

• From Figures 14, we can see that from the medians of the samples that when the

priority probability is between 0.4 and 0.6, we get the faster rates of convergence for

the errors.

• For functions 5,6 and 7, we find that the error convergence is not very good as it

stays flat for some generations then drops down. This may be due to how the jump

function decays as it has an effect on the size of the jumps.

• In Figures 15, from using all the samples and looking at the minimum and the

maximum error for each iterations we can see that for most functions, the error

varies a lot. This could mean that the data we have got may not give us accurate

information or that the priority level does not make a big difference to the error

decay.

• For most functions however, we can see that the smallest errors are usually achieved

the priority levels between 0.4 and 0.6 and the bigger errors are made by the two

ends of the priority spectrum.

• In conclusion, priority levels between 0.4 and 0.6 seem to give the fastest error decay

for most functions.

27

3.4 Number of Elements Needed to Evaluate Before Starting a New

Generation - Mutation

Table 5: Parameters used to get the data

Ratio of xBest to the population size 0.6

Ratio of number of elements to evaluate before

starting a new generation to the population size

0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8,

0.9, 1

Number of workers 5

Repeats 20

Population size 50

Priority to the latest generation 0.7

Maximum Time 60 seconds

Tolerance 1× 10−6

Functions used 1, 2, 3, 4, 5, 6, 7

Breeding type Mutation

Figure 16: Results for adjusting the ratio of the number of elements needed to evaluate
before starting a new generation to the population size with mutation

Figure 16.a

28

Figure 16.b

Figure 16.c

29

• From Figure 16.c, we can see that when the ratio in below 0.4, the percentage of

convergence is a mostly below 100%. From Figure 16.a, we can see that between

ratio of 0.4 and 0.9, the time take for convergence is mostly flat except for function

1. Between ratio of 0.9 and 1, we see an increase in time, this indicates that the

extra evaluations did not give us any better information and took a longer time.

• Figure 16.b shows that as the ratio increases, the number of generations decreases

to a certain point and is then mostly flat. This is because we get more information

from one generation hence need fewer generations to reach the minimum.

• One point we need to take into account is that the function we are evaluating here

takes little time to evaluate however the function evaluation might take a lot more

time, so as we increase the ratio, the more evaluations would be made per generation

which would take longer. Taking this into account the best range for the ratio would

be between 0.4 and 0.6, to keep the time taken from evaluations low.

• In conclusion, for mutation, ratios between 0.4 and 0.6 give the best results.

Figure 17: Errors for adjusting the ratio of the number of elements needed to evaluate
before starting a new generation to the population size with mutation

Figure 17.a

30

Figure 17.b

Figure 17.c

31

Figure 17.d

Figure 17.e

32

Figure 17.f

Figure 17.g

33

Figure 18: Spread in error for adjusting the ratio of the number of elements needed to
evaluate before starting a new generation to the population size with mutation

Figure 18.a

Figure 18.b

34

Figure 18.c

Figure 18.d

35

Figure 18.e

Figure 18.f

36

Figure 18.g

• From Figures 17, we see that ratio of 0.1 and 0.2 for every function gives the slowest

decay of error.

• For ratios between 0.4 and 1, we seem to get quite similar error decays for most

functions.

• From Figures 18, we can see that the spread is a lot less than what we saw in

Section 3.3. This indicates that the results are more accurate therefore more infor-

mative.

• Similar to as seen in the Figures 17, ratio of 0.1 has the slowest error decay by far.

We see that the spreads of most of the ratios between 0.4 and 1 overlap each other

a lot which means they all have fairly similar error decays.

• In conclusion, we see that low ratio has the slowest error decay and ratios from 0.4

to 1 give faster and similar error decays.

37

3.5 Size of xBest - Mutation

Table 6: Parameters used to get the data

Ratio of xBest to the population size

0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8,

0.9, 1

Ratio of number of elements to evaluate before

starting a new generation to the population size
0.6

Number of workers 5

Repeats 20

Population size 50

Priority to the latest generation 0.7

Maximum Time 60 seconds

Tolerance 1× 10−6

Functions used 1, 2, 3, 4, 5, 6, 7

Breeding type Mutation

Figure 19: Results for adjusting the ratio of the size of xBest to the population size with
mutation

Figure 19.a

38

Figure 19.b

Figure 19.c

39

• From Figures 19.a and 19.b, we see that the time taken is proportional to the number

of generations reached and this is because the number of elements to evaluate because

starting a new generation is fixed.

• We see that for most functions the time taken is flat up till ratio 0.5 then time taken

starts to increase. However, for function 1, the time decreases until ratio 0.5 then is

flat until 0.9 then it increases for 1. This tells us that have the ratio equal to 1 is

bad because there are no random points that form the population as it is completely

made from the xBest.

• Figure 19.c shows all functions converge for ratio between 0.3 and 0.7.

• In conclusion, for mutation, the ratio of 0.5 gives the fastest convergence to the

minimum.

Figure 20: Errors for adjusting the ratio of the size of xBest to the population size with
mutation

Figure 20.a

40

Figure 20.b

Figure 20.c

41

Figure 20.d

Figure 20.e

42

Figure 20.f

Figure 20.g

43

Figure 21: Spread in error for adjusting the ratio the size of xBest to the population size
with mutation

Figure 21.a

Figure 21.b

44

Figure 21.c

Figure 21.d

45

Figure 21.e

Figure 21.f

46

Figure 21.g

• The spread in Figures 21 are large and vary a lot. This means that the error decays

from the different ratios are similar and do not make too much of a difference.

• However, the ratio of 1 seems to have the slowest error decay for most functions as

seen from Figures 20.

• In terms of error decay, the conclusion we get is that ratio of 1 gives the slowest

error decay and the lower ratios give the faster error decays for mutation.

47

3.6 Number of Elements Needed to Evaluate Before Starting a New

Generation - Crossover

Table 7: Parameters used to get the data

Ratio of xBest to the population size 0.6

Ratio of number of elements to evaluate before

starting a new generation to the population size

0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8,

0.9, 1

Number of workers 5

Repeats 20

Population size 50

Priority to the latest generation 0.7

Maximum Time 60 seconds

Tolerance 1× 10−6

Functions used 1, 2, 3, 4, 5, 6, 7

Breeding type Crossover

Figure 22: Results for adjusting the ratio of the number of elements needed to evaluate
before starting a new generation to the population size with crossover

Figure 22.a

48

Figure 22.b

Figure 22.c

49

• Figure 22.c shows us that the percentage of convergence for most functions is hardly

ever 100%. This shows that crossover is not as good as mutation. We see that the

percentage of convergence increases with the ratio. This is because we get more

information as the ratio increases, the more information we have, the better we can

fit a Gaussian distribution to the data.

• We also see that function 7, hardly converges to the minimum. This is because this

function have multiple global minima, this means that the Gaussian distribution

does not describe the distribution of the points well. However, a Gaussian mixture

model might work better for this function.

• From Figure 22.a, we see that when we do converge, we converge just as fast as

mutation breeding and Figure 22.b shows that the number of generations reached

is similar when we converge to the minimum. The number of generations reached

decreases with the ratio as it takes longer to a new generation to be made as the

higher the ratio, the more elements need to be evaluated.

• In conclusion, for crossover, we get the best results for ratio equal to 1.

Figure 23: Errors for adjusting the ratio of the number of elements needed to evaluate
before starting a new generation to the population size with crossover

Figure 23.a

50

Figure 23.b

Figure 23.c

51

Figure 23.d

Figure 23.e

52

Figure 23.f

Figure 23.g

53

Figure 24: Spread in error for adjusting the ratio of the number of elements needed to
evaluate before starting a new generation to the population size with crossover

Figure 24.a

Figure 24.b

54

Figure 24.c

Figure 24.d

55

Figure 24.e

Figure 24.f

56

Figure 24.g

• From Figures 23, for functions 1-6, the ratios between 0.8 and 1 have the fastest

error decays and where convergence to the minimum is reached, ratio of 0.1 and 0.2

have the slowest error decay. This shows that the higher the ratio, the better error

decay we get.

• From Figures 24, we see that the spread is small for ratios of 0.1 and 1 for most

functions, however the spread is much larger for ratios in the middle, especially 0.7-

0.9. However, the picture is still clear with the error decay is faster as the ratio

increases and is the best for ratio of 1, implying that this breeding works the best

when using all of information available.

• In conclusion, for crossover, we get the best error decay for ratio equal to 1.

57

3.7 Size of xBest - Crossover

Table 8: Parameters used to get the data

Ratio of xBest to the population size

0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8,

0.9, 1

Ratio of number of elements to evaluate before

starting a new generation to the population size
0.6

Number of workers 5

Repeats 20

Population size 50

Priority to the latest generation 0.7

Maximum Time 60 seconds

Tolerance 1× 10−6

Functions used 1, 2, 3, 4, 5, 6, 7

Breeding type Crossover

Figure 25: Results for adjusting the ratio of the size of xBest to the population size with
crossover

Figure 25.a

58

Figure 25.b

Figure 25.c

59

• From Figure 25.c, we can see that for ratio of 0.1, we get a low percentage of

convergence to the minimum for functions 1-5 then increases between 0.1-0.4 and

then stays flat. We get similar results for functions 6 and 7 but much lower. The

most percentage of convergence is seen at ratio of 1. This is because we have the most

number of elements to fit a distribution to and this gives us the best distribution to

sample from for the next population.

• From Figures 25.a and 25.b, we see that the time taken and the number of generations

reached are proportional. This is because the number of elements needed to evaluated

for each generation is fixed. We see that the general trend for time taken is that it

decreases as the ratio increases.

• In conclusion, for crossover, we get the best results for ratio equal to 1.

Figure 26: Errors for adjusting the ratio of the size of xBest to the population size with
crossover

Figure 26.a

60

Figure 26.b

Figure 26.c

61

Figure 26.d

Figure 26.e

62

Figure 26.f

Figure 26.g

63

Figure 27: Spread in error for adjusting the ratio the size of xBest to the population size
with crossover

Figure 27.a

Figure 27.b

64

Figure 27.c

Figure 27.d

65

Figure 27.e

Figure 27.f

66

Figure 27.g

• From Figures 26, we see that the error decay is particularly slow for ratio 0.1 for

most functions. However, for the other ratios for most functions, the error decay is

quite similar.

• From Figure 27, we see that the spread of the errors in general is high and most

ratios overlap each other, except for when ratio is 1 where the spread in most cases

is very small compared to the other ratios.

• In conclusion we see that for crossover, the ratio of 1 gives the best results in terms

of error decay.

3.8 Higher Dimensional Optimization

Here we study a function f : [−5, 5]10 → R, shown in Section 5.2.8, for our optimization

algorithm. Here are some of the properties that we changed while testing our algorithm

on this function.

• We used mutation and breeding together, we alternate between the two types of

breeding in every generation.

• While studying using the algorithm on this function, convergence to the minimum

was never achieved. The problem was with mutating or crossing over. Heuristically

the chances of getting fitter elements after the jump or crossover is lowered as the

67

number of dimensions is higher. To get around this problem, I changed my algorithm

so in each generation it will only mutate or crossover only in one dimension and cycle

through the dimensions in different generations.

• We also had to adjust the temperature function to get the right decay for the jump:

temperature(n) =
1

(log (log (n)))2

After making these changes to the algorithm, we used the parameters in Table 9 to get

results.

Table 9: Parameters used to get the data

Ratio of xBest to the population size 0.9

Ratio of number of elements to evaluate before

starting a new generation to the population size

0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1

Number of workers 5

Repeats 10

Population size 50

Priority to the latest generation 0.5

Maximum Time 300 seconds

Tolerance 1× 10−6

Functions used 8

Breeding type
Mutation &

Crossover

68

Figure 28: Results for adjusting the ratio of the number of elements needed to evaluate
before starting a new generation to the population size for higher dimensional test function

Figure 28.a

Figure 28.b

69

Figure 28.c

Figure 29: Errors for adjusting the ratio of the size of xBest to the
population size

70

Figure 30: Spread in error for adjusting the ratio the size of xBest to the population size

• From Figure 28.c, we can immediately see that when the ratio is 1, we get no

convergence. This gives evidence to use the asynchronous model that we have built

for the algorithm.

• Figure 28.a displays that ratios between 0.6-0.8 give the fastest time for the algorithm

to run.

• The number of repeats is low but we can still see a clear trend forming.

• Looking at Figure 30, we can see that the spread of the errors are fairly small except

for when ratio is 0.9. This backs up the results that we obtained.

• Figure 29 shows that all ratios between 0.4-0.8 seem to have very similar error decays

and the ratio of 0.9 has slower error decay.

71

4 Conclusion

4.1 Results

• We first saw that the speed up for the master-worker system was very good. This

is because the time to evaluate the function is assumed to be much bigger than the

other parts of the algorithm. Therefore, parallelising function evaluation means we

are parallelising most of the algorithm in terms of time taken for the algorithm to

run.

• Studying priority levels given to the latest generation, we found that priority levels

between 0.4-0.6 would give us the best percentage of convergence to the minimum,

fastest times to converge to the minimum and fastest error decays.

• For mutation, the ratios of the number of elements needed to be evaluated before

starting the next generation to the population size between 0.4 and 0.6 gave us the

best results in terms of time taken to converge to the minimum, the percentage of

convergence and error decays. This provides support to the asynchronous model we

are working with. The ratio of the size of the xBest to the size of the population of

0.5 gave the best results where the error decays were quite similar to error decays

for ratios between 0.4-1.

• For crossover, both ratios we studied show that the best results are obtained when

the ratios are equal to 1. This means that the asynchronous model is not good for

this type of breeding.

• Finally, testing our algorithm on a higher dimensional function gave us a lot of

information. First was that breeding on individual dimensions is a lot better than

breeding with all dimensions at the same time. We saw that using both mutation

and crossover worked well together. Finally, we saw that the temperature function is

very important for convergence and the rate of convergence to the minimum. From

the results we obtained, we found that the ratios of the number of elements needed

to be evaluated before starting the next generation to the population size between

0.6 and 0.8 gave the best results. Again, this backs our asynchronous model.

4.2 Further Investigation That Can Be Made

• We would like to investigate into a variable temperature function that depends on

the absolute difference between successive elements of xBest. This would be useful

because we saw that some error decays were slow, for example Figure 17.e, and this

would have been because the temperature function was not giving the jumps of the

right size to get closer to the minimum.

72

• We could look into test functions which are continuous but not differentiable as our

algorithm is not gradient based.

• Further investigate into breeding one dimension at a time rather than all dimensions

at once as we saw in Section 3.8 that this worked better.

• Interesting results might be found if the ratio of the size of the xBest to the size of

the population is greater than one but we would only make part of the population

from the xBest and still have random points for the rest. We saw that we get bad

convergence results to the minimum when the ratio is equal to 1 for mutation but

we get the best convergence results for crossover. Having a ratio greater than one

would mean for crossover we will have more points in our data set to fit a distribution,

making the distribution potentially from accurate to sample from.

73

5 Appendix

5.1 Code

5.1.1 Main Script

MATLAB is use in implementing the algorithm from Section 2. Here is the main script

for implementing the algorithm:

1 % Main Script

2

3 %% Initialization

4

5 % Start Timing for the whole code

6 tTotal = tic;

7

8 dim = 2; % Dimension of domain

9 bounds = [−5 5; −5 5]; % Bounds

10 popSize = 50; % Population size

11 totalGenNumber = 1e5; % Total number of generations

12 maxTime = 60; % Maximum time

13 f = @(x) x(1)ˆ2+x(2)ˆ2; % Set the function here

14

15 % Ratio of number of elements to evaluate before starting the next

16 % generation to the population size

17 firstRatio = 0.5;

18

19 % Ratio of the size of xBest to the population size

20 fittestRatio = 0.6;

21

22 % Tolerance

23 tolerance = 1e−6;
24

25 % Priority given to the latest generation

26 priorityProbArray = 0.7;

27

28 % Numbers to represent information of elements

29 empty = 0;

30 filled = 1;

31 priority = 2;

32 busy = 3;

33 evaled = 4;

34

35 % Variable to represent convergence (1) or not (−1)
36 convg = 0;

37

38 % Actual number of elements from the respective ratios

74

39 fittestElements = round(fittestRatio*popSize);

40 firstElements = round(firstRatio*popSize);

41

42 % Cell arrays to hold data

43 x = cell(totalGenNumber+1,1);

44 fx = x;

45

46 spmd % Start parallel mode with communication

47

48 if labindex == 1 % Master's code

49

50 % Initalise arrays

51 for genNumber =1:totalGenNumber +1

52 x{genNumber +1} = zeros(dim,popSize);

53 fx{genNumber +1} = zeros(1,popSize);

54 end

55

56 % Initialise tracker array that keep track on information of

57 % elements

58 tracker = empty*ones(totalGenNumber +1,popSize);

59

60 % Initialise tracker array that keeps information about which

61 % worker has evaluated wwhich element

62 labTracker = tracker;

63

64 % Initalise variables for master

65 genNumber = 0;

66 priorityGenNumber = 0;

67 busyTracker = 0;

68 evaledTracker = 0;

69 evaledGenTracker = 0;

70 bestFound = 0;

71 endGenNumber = totalGenNumber;

72

73 % Initial population

74 x{genNumber+1} = popGen(dim,bounds,popSize,genNumber,...

75 totalGenNumber,fittestElements,0);

76 tracker(genNumber+1,:) = filled*ones(1,popSize);

77

78 % fxBest given big numbers to start with

79 xBest = x{genNumber+1}(:,1:fittestElements);
80 fxBest = 1e5*ones(1,fittestElements);

81

82 % Variable to show all workers are finished or not

83 done = zeros(1,numlabs−1);
84

85 % Start while loop to send/recv information

86 while isequal(done,ones(1,numlabs−1)) ˜= 1

87

75

88 % Receive message from any worker

89 temp = labReceive('any',0);

90

91 % If 0 then worker requesting an element for evaluation

92 if temp{1} == 0

93

94 labIdx = temp{2};
95

96 % If no elements left then tell worker he is done

97 if (busyTracker + evaledTracker == numel(tracker)...

98 | | bestFound == 1 | | toc(tStart) > maxTime)

99

100 labSend({'done'},labIdx,1);
101

102 % If maximum time is reached or maximum number of

103 % generations reached then we have not converged

104 if (toc(tStart) > maxTime | | ...
105 busyTracker + evaledTracker == numel(tracker))

106 convg = −1;
107 endGenNumber = priorityGenNumber;

108 end

109

110

111 % Otherwise send an element some work

112 else

113

114 % Find elements for evaluation

115 [genNumber,popNumber] = indexOfElement(tracker,...

116 priorityProb,filled,priorityGenNumber);

117

118 % If we cannot find an element then ask worker to wait

119 if strcmp(genNumber,'wait') == 1

120 labSend({'wait'},labIdx,1);
121

122 % If we found then element then send it

123 else

124 labSend({genNumber,popNumber,...
125 x{genNumber+1}(:,popNumber)},labIdx,1);
126

127 % Update tracker

128 tracker(genNumber+1,popNumber) = busy;

129 labTracker(genNumber+1,popNumber) = labIdx;

130 busyTracker = busyTracker +1;

131 end

132 end

133

134 % If 1 then worker sending evaluated element back

135 elseif temp{1} == 1

136

76

137 % Check what element is received and store the results

138 genNumber = temp{3};
139 popNumber = temp{4};
140 fx{genNumber+1}(popNumber) = temp{5};
141

142 % Update xBest

143 if priorityGenNumber ˜= 0

144 [xBest,fxBest] = updateBest(xBest,fxBest,...

145 x{genNumber+1}(:,popNumber),temp{5},...
146 fittestElements);

147 end

148

149 % Check if tolerance level is reached

150 if abs(fx{genNumber+1}(popNumber)−fmin) < tolerance

151 bestFound = 1;

152 endGenNumber = priorityGenNumber;

153 % We have converged

154 convg = 1;

155 end

156

157 % Update tracker

158 tracker(genNumber+1,popNumber) = evaled;

159 evaledTracker = evaledTracker +1;

160 busyTracker = busyTracker −1;
161 evaledGenTracker = evaledGenTracker +1;

162

163 % Check how many elements have beeen evaluated in this

164 % generation

165 idx = find(tracker(genNumber+1,:) == evaled);

166 counter = numel(idx);

167

168 % If we have evaluated enough elements then start next

169 % generation

170 if evaledGenTracker == firstElements &&...

171 genNumber < totalGenNumber

172

173 x{genNumber+1 +1} = popGen(dim,bounds,popSize,...

174 genNumber+1,totalGenNumber,fittestElements,...

175 xBest);

176

177 % Update tracker

178 tracker(genNumber+1 +1,:) = filled*ones(1,popSize);

179 priorityGenNumber = genNumber +1;

180 evaledGenTracker = 0;

181 end

182

183 % If 2 then the worker has been told that he is done and the

184 % master knows that too

185 elseif temp{1} == 2

77

186

187 labIdx = temp{2};
188 % Update done

189 done(labIdx−1) = 1;

190

191 end % Type of message received

192 end % Master while loop

193

194 else % Worker's code

195

196 % Variable to show that worker is done or not

197 done = 0;

198

199 % While loop to send and receive information

200 while done ˜= 1

201

202 % Send message to master to asking for an element

203 labSend({0,labindex},1,0);
204

205 % Receive message from master with an element

206 temp = labReceive(1,1);

207

208 % If message is 'done' then the worker is finished

209 if strcmp(temp{1},'done') == 1

210

211 % Send final message saying the worker is done

212 labSend({2,labindex},1,0);
213 done = 1;

214

215 % Otherwise work is received which needs to be done

216 elseif strcmp(temp{1},'wait') == 1

217 continue;

218

219 else

220

221 % Information from the message

222 genNumber = temp{1};
223 popNumber = temp{2};
224 x = temp{3};
225

226 % Evaluate the element where 'f' is the function we are

227 % evaluating

228 fx = funcEval(dim,1,f,x);

229

230 % Send the evaluted element back to the master

231 labSend({1,labindex,genNumber,popNumber,fx},1,0);
232

233 end

234 end % Worker while loop

78

235 end % If master/worker

236 end % SPMD

237

238 % Total time taken

239 tTotal = toc(tTotal);

240 disp(tTotal);

5.1.2 Population Generation

Here is the code for generating a new population:

1 function [newGen] = popGen(dim,bounds,popSize,genNumber,...

2 fittestElements,xBest)

3

4 if genNumber == 0

5 % If inital population, take uniform random points within bounds

6 % Potentially can be parallelised

7 newGen = randPopGen(dim,bounds,popSize);

8 else

9

10 % Make the first part of the population from xBest

11 newGen(:,1:fittestElements) = breed(dim,bounds,fittestElements,...

12 genNumber,xBest);

13

14 % For the rest of the population get uniform random points

15 % within bounds

16 if fittestElements < popSize

17 newGen(:,fittestElements+1:popSize) = randPopGen(dim,bounds,...

18 popSize−fittestElements);
19 end

20

21 % Randomise population

22 idx = randperm(popSize);

23 newGen = newGen(:,idx);

24

25 end

26 end

5.1.3 Random Population Generation

Here is the code for generating a uniformly random population:

1 function [x] = randPopGen(dim,bounds,popSize)

2

79

3 % Calculate the size of each interval

4 space = abs(bounds(:,2) − bounds(:,1));

5

6 % Create uniform random number between 0 and 1 then multiply by the

7 % size of the interval then add the left side of the interval

8 x = kron(bounds(:,1),ones(1,popSize)) +...

9 kron(space,ones(1,popSize)).*rand(dim,popSize);

10

11 end

5.1.4 Breeding

Here is the code for breeding in generating the population from xBest:

1 function [x] = breed(breedtype,dim,bounds,popSize,genNumber,xBest)

2

3 % Initialise output

4 x = zeros(dim,popSize);

5

6 % Sample from standard normal distribution

7 r = randn(dim,popSize);

8

9 % If breeding type is crossover

10 if breedtype == 1

11

12 % Mean and standard deviation for estimating Gaussian distribution

13 mu = mean(xBest,2);

14 C = std(xBest,0,2);

15

16 % Translate and rescale to make the same for the estimated Gaussian

17 % distribution and check if in bounds, if not then replace with

18 % bound

19 for i = 1:dim

20 for j = 1:popSize

21 x(i,j) = mu(i) + C(i)*r(i,j);

22 if x(i,j) > bounds(i,2)

23 x(i,j) = bounds(i,2);

24 elseif x(i,j) < bounds(i,1)

25 x(i,j) = bounds(i,1);

26 end

27 end

28 end

29

30 % If breeding type is mutation

31 elseif breedtype == 0

32

33 % Function for temperature

80

34 g = @(genNumber) 1/(10*genNumber);

35

36 % Rescaling constant from temperature function

37 c = g(genNumber);

38

39 % Loop over all the individual components and add the jumps and

40 % then check for bounds, if out of bounds then replace with bound

41 for i = 1:dim

42 for j = 1:popSize

43 x(i,j) = xBest(i,j) + c*r(i,j);

44 if x(i,j) > bounds(i,2)

45 x(i,j) = bounds(i,2);

46 elseif x(i,j) < bounds(i,1)

47 x(i,j) = bounds(i,1);

48 end

49 end

50 end

51 end

52 end

5.1.5 Picking Element to Evaluate

Here is the code for picking a generation and then an element in that generation for

evaluation:

1 function [genNumber,popNumber] = indexOfElement(tracker,priorityProb,...

2 filled,priorityGenNumber)

3

4 % Initialise N for while loop

5 N = priorityGenNumber+1;

6

7 % Sample from geometric distribution with given priorityProb until it

8 % is between 0 and prioritygenNumber

9 while N >priorityGenNumber

10 N = geornd(priorityProb);

11 end

12

13 % Find an element in the generation priorityGenNumber+1−N
14 idx = find(tracker(priorityGenNumber+1−N,:) == filled,1);

15

16 % If there is none, send 'wait'

17 if isempty(idx) == 1

18 genNumber = 'wait';

19 popNumber = 0;

20 % Otherwise send the index of the element

21 else

22 genNumber = priorityGenNumber − N;

81

23 popNumber = idx;

24 end

25

26 end

5.1.6 Function Evaluation

Here is the code for the function evaluation, the parameters include the element(s) you

are trying to evaluate and the minimising function. Instead you can adjust this so that it

have the minimising function defined within the code.

1 function [fx] = funcEval(dim,popSize,f,x)

2

3 % Initialize array

4 fx = zeros(1,popSize);

5

6 % For loop to evaluate the function over all of population

7 for i = 1:popSize

8 fx(i) = f(x(:,i));

9 end

10

11 end

82

5.2 Test Functions

The following are the test functions with the minimisers shown as a red star marker.

5.2.1 Ackley’s Function: R2 → R

f(x, y) = −20 exp
(
−0.2

√
0.5 (x2 + y2)

)
− exp (0.5 (cos (2πx) + cos (2πy))) + e+ 20

Thorny function with minimum at (0, 0) and D = [−5, 5]× [−5, 5].

Figure 31: Ackley’s Function Figure 32: Ackley’s Function Contour

5.2.2 Sphere Function R2 → R

f(x, y) = x2 + y2

Very smooth function where D = R2 and minimum at (0, 0)

Figure 33: Sphere Function Figure 34: Sphere Function Contour

83

5.2.3 Rosenbrock Function R2 → R

f(x, y) = (1− x)2 +
(
y − x2

)2
Minimum at (1, 1), D = [−5, 5]× [−5, 5].

Figure 35: Rosenbrock Function
Figure 36: RosenBrock Function Con-
tour

5.2.4 Beale’s Function R2 → R

f(x, y) = (1.5− x+ xy)2 +
(
2.25− x+ xy2

)2
+
(
2.625− x+ xy3

)2
Minimum at (3, 0.5), D = [−5, 5]× [−5, 5].

Figure 37: Beale’s Function Figure 38: Beale’s Function Contour

84

5.2.5 Levi Function R2 → R

f(x, y) = sin2 (3πx) + (x− 1)2
(
1 + sin2 (3πy)

)
+ (y − 1)2

(
1 + sin2 (2πy)

)
Thorny function with minimum at (1, 1), D = [−5, 5]× [−5, 5].

Figure 39: Levi Function Figure 40: Levi Function Contour

5.2.6 Easom Function R2 → R

f(x, y) = − cos(x) cos(y) exp
(
−
(

(x− π)2 + (y − π)2
))

Minimum at (π, π), D = [−5, 5]× [−5, 5].

Figure 41: Easom Function Figure 42: Easom Function Contour

85

5.2.7 Holder Table Function R2 → R

f(x, y) = −

∣∣∣∣∣sin(2x) cos(2y) exp

(∣∣∣∣∣1−
√

(2x)2 + (2y)2

π

∣∣∣∣∣
)∣∣∣∣∣

Minimums at (α, β), (−α, β), (α,−β), (−α,−β) where α = 4.02751 and β = 4.832295.

D = [−5, 5]× [−5, 5].

Figure 43: Holder Table Function
Figure 44: Holder Table Function Con-
tour

5.2.8 Rastrigin Function Rd → R

f(x1, . . . , xd) = 10d+
d∑

i=1

(
x2i − 10 cos (2πxi)

)
Minimum at (0, . . . , 0). D = [−5, 5]d.

Figure 45: Rastrigin Function For d=2

86

5.2.9 Sample Paths for the Test Functions

Figure 46: Function 1

Figure 46.a: Function 2

87

Figure 46.b: Function 3

Figure 46.c: Function 4

88

Figure 46.d: Function 5

Figure 46.e: Function 6

89

Figure 46.f: Function 7

90

Bibliography

[1] Z.Michalewicz, Genetic Algorithms + Data Structures = Evolutionary Programs,

Springer, 1992, 17-18.

[2] G.Luque, E.Alba, Parallel Genetic Algorithms: Theory and Real World applications,

Springer, 2011, 20-21.

[3] W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery, Numerical Recipes: The Art

of Scientific Computing, Cambridge University Press, 2007, 842-847.

91

	Introduction
	Optimization
	Genetic Algorithm
	Asynchronous Parallel Algorithm

	Algorithms
	Generating Population
	Breeding

	Fading Memory or Priority to the Latest Generation
	Termination Criteria
	Implementation

	Testing
	Number of Workers
	Analysis

	Description of the Testing
	Fading Memory or Priority to the Latest Generation - Mutation
	Number of Elements Needed to Evaluate Before Starting a New Generation - Mutation
	Size of xBest - Mutation
	Number of Elements Needed to Evaluate Before Starting a New Generation - Crossover
	Size of xBest - Crossover
	Higher Dimensional Optimization

	Conclusion
	Results
	Further Investigation That Can Be Made

	Appendix
	Code
	Main Script
	Population Generation
	Random Population Generation
	Breeding
	Picking Element to Evaluate
	Function Evaluation

	Test Functions
	Ackley's Function: R2R
	Sphere Function R2R
	Rosenbrock Function R2R
	Beale's Function R2R
	Levi Function R2R
	Easom Function R2R
	Holder Table Function R2R
	Rastrigin Function RdR
	Sample Paths for the Test Functions

