
Intro to UQ Assignment 4
Joy Tolia - 1103478

1 Introduction

E [1]

For this assignment I will be reviewing a paper written by P. G. Constantine, D. F. Gleich and G. Iaccarino
called A factorization of the spectral Galerkin system parameterized matrix equations: derivation and appli-
cations. The paper looks at the following problem:

• Given s ∈ S a set of input parameters in a d-dimensional tensor product parameter space:

S = S1 ⊗ · · · ⊗ Sd

Where Si may be bounded or unbounded. Take a bounded, separable, positive weight function on the
parameter space ω : S → R+, where:

ω(s) = ω1 (s1) · · ·ωd (sd)

Given an N × N matrix valued function A(s) which we assume is invertible for all s ∈ S:

A : S → RN×N

And given an N × 1 vectored valued function b(s) where each component of b(s) is square integrable
with respect to ω:

b : S → RN×1

Then we are trying a find an N × 1 vector valued function x(s) which satisfies:

A(s)x(s) = b(s), s ∈ S (1)

• This kind of parameterized matrix problem comes up as an intermediate step when computing approx-
imate solutions to a complex problem with multiple input parameters. They appear in many different
areas like differential equations with random inputs, electronic circuit design, image deblurring mod-
els and ranking methods for nodes in a graph.

• After finding an approximate solution is made which is cheaper to evaluate than the true solution, we
can use mean and variance of the approximate solution to represent estimates of the true solution.

• This is where we will use the concepts we learnt in lectures about spectral methods. We will use a
series of orthonormal polynomial polynomial basis functions to approximate the solution x(s). The
basis will be over L2 (S, ω;R).

• We use here what we learnt about multi variate orthonormal polynomials and use multi index notation:

α = (α1, . . . , αd) ∈ Nd
0

And we define the basis polynomial as:

πα = πα1 (s1) · · · παd (sd) (2)

1

Where παi (si) is a univariate orthonormal polynomial of degree αi ∈ N0. The orthogonality is defined
by the weight function ωi (si). Then we have:∫

S

πα (s) πβ (s)ω (s) ds = δαβ

Where α = β if αi = βi for all i = 1, . . . , d.

• For a given index set I ⊂ Nd
0 with size |I| < ∞. We can use the following polynomial approximation:

x (s) =
∑
α∈I

xαπα (s)

=

· · · + (xα)1 πα (s) + · · ·

...
· · · + (xα)N πα (s) + · · ·

︸ ︷︷ ︸
N×1

, α ∈ I

=

...

· · · xα · · ·
...

︸ ︷︷ ︸
N×|I|

...

πα (s)
...

︸ ︷︷ ︸
|I|×1

, α ∈ I

= Xπ (s)

Where xα ∈ RN×1 is the vector of coefficients of the series, corresponding to πα (s) and (xα)i is the
i-th component of xα for i = 1, . . . ,N. The matrix X ∈ RN×|I| has columns xα and the parameterized
vector π (s) ∈ R|I|×1 contains the basis polynomials. The goal of the approximation method is to find
the unknown coefficients X.

• Typically we use:
I = In =

{
α ∈ Nd

0 : α1 + · · · + αd ≤ n
}

We have that |In| =

(
n + d

n

)
, which grows quickly with d > 1. We have the following drawbacks:

1. The method of computing the coefficients involves solving a linear system of size N |I| × N |I|,
which can be really big even for a small number of parameters (6 to 10) and low order polyno-
mials (degree < 5).

2. Another drawback of the Galerkin method is its limited ability to take advantage of existing
solvers for the problem A (λ) x (λ) = b (λ) given a parameter point λ ∈ S. Other methods such as
pseudospectral and collocation methods have distinct advantages from the point of view of code
reuse and rapid implementation.

To get around these drawbacks, we replace the integration in the Galerkin method by a multivariate
quadrature rule. We derive a decomposition of the linear system of equations. We get the following
advantages:

1. The decomposition means we can compute the Galerkin coefficients using only the evaluations
of A (λ) and b (λ) for quadrature nodes λ ∈ S.

2

2. We only need matrix-vector multiplications as in Krylov-based iterative methods which we will
look at later. These methods take full advantage of the sparsity of the parameterized system
resulting in memory reduced requirements. By sparse matrices, we mean matrices with very
few non-zero elements. There are very memory efficient methods of storing these matrices
which we can use.

3. The decomposition gives us an intuition on how to use a preconditioner on the Galerkin system
from work already done on this area.

4. The decomposition also gets bounds on the eigenvalues of the Galerkin system provided A is
symmetric.

2 Derivation and Decomposition

In this section we do some of the derivation and then talk about the decomposition. We will use the index
set I to denote the index set for the basis orthonormal multivariate polynomials. We will use the index set
J to denote the index set for the points/weights in quadrature rule.

• We will use the bracket notation 〈·〉 to denote a discrete integral with respect to the weight function ω,
so for a function f : S → R: ∫

S

f (s)ω (s) =
∑
β∈J

f
(
λβ

)
νβ =: (f)

where λβ =
(
λβ1 + · · · + λβd

)
∈ S and

{(
λβ, νβ

)}
β∈J

define a multivariate quadrature rule, where νβ are
weights.

• Let us now look at the Galerkin method we will be using to compute the coefficients of the polynomial
model Xπ (s). Define the residual:

r (y, s) = A (s) y (s) − b (s)

Let xg (s) be the Galerkin approximation. Denote the i-th component of the residual by ri
(
xg, s

)
.The

Galerkin method requires that each component of the residual be orthogonal to the approximation
space defined by the span of πα for α ∈ I:〈

ri
(
xg

)
πα

〉
= 0, i = 1, . . . ,N, α ∈ I

3

Using matrix notation:

〈
r
(
xg

)
πT

〉
=

· · ·

〈
r1

(
xg

)
πα

〉
· · ·

...
...

...
· · ·

〈
rN

(
xg

)
πα

〉
· · ·

︸ ︷︷ ︸
N×|I|

, α ∈ I

=

· · ·

〈(
A

(
xg

)
− b

)
1
πα

〉
· · ·

...
...

...
· · ·

〈(
A

(
xg

)
− b

)
N
πα

〉
· · ·

︸ ︷︷ ︸
N×|I|

, α ∈ I

=
〈(

Axg − b
)
πT

〉
= 0

Making the substitution xg (s) = Xπ (s), we get:〈
AXππT

〉
=

〈
bπT

〉
Let us quickly look at vector notation. Suppose the matrix Z ∈ Rn×m is made of columns zi ∈ R

n×1

where i = 1, . . . ,m. Then we have:

vec(Z) =

z1
...

zm

 ∈ Rnm×1

Suppose the matrix Y ∈ Rp×q is made of the elements yi j ∈ R with i = 1, . . . , p and j = 1, . . . , q then
we have the following notation:

Y ⊗ Z =

y11Z · · · y1qZ

...
...

...
yp1Z · · · ypqZ

 ∈ Rpn×qm

Where each yi jZ ∈ Rn×m is a matrix for i = 1, . . . , p and j = 1, . . . , q. Then we have an equivalent
statement to

〈
AXππT

〉
=

〈
bπT

〉
: 〈

ππT ⊗ A
〉

x = 〈π ⊗ b〉 (3)

Where x = vec(X) ∈ RN |I|×1 is a constant vector. The constant matrix
〈
ππT ⊗ A

〉
∈ RN|I|×N|I| has a

distinct block structure; the α, β block is equal to
〈
παπβA

〉
∈ RN×N for multi-indices α, β ∈ I. Finally

the constant vector 〈π ⊗ b〉 ∈ RN|I|×1 has the α block as 〈παb〉 ∈ RN×1 for the multi index α ∈ I.

• Once we get the form
〈
ππT ⊗ A

〉
we have a decomposition for the matrix which is written as a theorem

in the publication.

Theorem. Let
{(
λβ, νβ

)}
with β ∈ J be a multivariate quadrature rule. The matrix

〈
ππT ⊗ A

〉
can be

decomposed as 〈
ππT ⊗ A

〉
= (Q ⊗ I) A (λ) (Q ⊗ I)T

4

Where I ∈ RN×N is the N × N identity matrix, and Q ∈ R|I|×|J| is a matrix of size |I| × |J|- one row for each
basis polynomial and one column for each point in the quadrature rule. The matrix A (λ) ∈ RN|J|×N|J| is a
block diagonal matrix of size N |J| × N |J| where each non-zero block is A

(
λβ

)
for β ∈ J .

• Let us look at what (Q ⊗ I) and A (λ) look like. First the following are the elements of Q:

qαβ =
√
νβπα

(
λβ

)
, α ∈ I, β ∈ J

We get the decomposition because using the quadrature rules we have the following:〈
ππT ⊗ A

〉
=

∑
β∈J

[
π
(
λβ

)
π
(
λβ

)T
⊗ A

(
λβ

)]
νβ

Then we define the vectors:
qβ =

√
νβπ

(
λβ

)
Then we have: 〈

ππT ⊗ A
〉

=
∑
β∈J

qβqT
β ⊗ A

(
λβ

)
Where qβ form the columns for the matrix Q. and this forms the final decomposition.

(Q ⊗ I) =

...

· · · qαβI · · ·
...

 ∈ RN|I|×N|J|, α ∈ I, β ∈ J

Where I ∈ RN×N .

A (λ) =

. . . 0

A
(
λβ

)
0

. . .

 ∈ RN|J|×N |J|, β ∈ J

Where A
(
λβ

)
∈ RN×N for β ∈ J . So finally (Q ⊗ I) A (λ) (Q ⊗ I)T ∈ RN|I|×N|J|.

• As A (s) depends polynomially on s ∈ S, we have that each integrand in the matrix
〈
ππT ⊗ A

〉
is a

polynomial on s ∈ S. Therefore, as we have learnt from lectures there exists a Gaussian quadrature
rule so that we get the exact true Galerkin matrix at the end.

• We have for two rows rα, rβ of the matrix Q for α, β ∈ I the following relationship:

rαrT
β =

∑
γ∈J

πα
(
λγ

)
πβ

(
λγ

)
νγ

Similarly, from lectures if the quadrature rule is a tensor product Gaussian quadrature rule of suffi-
ciently high order to compute the exact integrand then we get QQT = I ∈ R|I|×|I|.

• We will now assume that the quadrature rule we use gives us the above property of Q being an
orthogonal matrix. We also assume that |I| ≤ |J| otherwise the Galerkin matrix

〈
ππT ⊗ A

〉
will be

rank deficient.

5

• We get the following corollary from the theorem which yields bounds on the spectrum of the matrix〈
ππT ⊗ A

〉
for symmetric A:

Corollary. Suppose A (s) is symmetric for all s ∈ S. The eigenvalues of
〈
ππT ⊗ A

〉
satisfy the bounds:

min
βJ

[
θmin

(
A

(
λβ

))]
≤ θ

(〈
ππT ⊗ A

〉)
≤ max

βJ

[
θmax

(
A

(
λβ

))]
where θ (X) denotes the eigenvalues of a matrix X, and θmin (X) and θmax (X) denote the smallest and largest
eigenvalues of X, respectively.

• Notice, from this corollary that we
〈
ππT ⊗ A

〉
is positive definite if A (s) is positive definite for all

s ∈ S.

3 Iterative Solvers

• To solve
〈
ππT ⊗ A

〉
x = 〈π ⊗ b〉, instead of inverting the matrix

〈
ππT ⊗ A

〉
which will have the same

computational cost as a matrix-matrix multiplication. We want to use Krylov Based iterative methods.
Suppose we are trying to solve

Ax = b

Then a Krylov based solver uses an iterative method to approximate x where xi, the approximation to
x for the i-th iteration, are in the Krylov subspace Kn (A, b) defined by:

Kn (A, b) = span
{
b, Ab, . . . , An−1b

}
The Krylov based methods give us advantages because:

1. We only need matrix-vector multiplication instead of matrix-matrix multiplication which is what
would be needed to invert a matrix.

2. We can use the spareness of our system to our advantage using Krylov iterative methods to
increase memory efficiency.

• Going back to our system let us look at the iterative method for the matrix-vector multiplication.
Given a vector u = vec (U), suppose we want to compute:

v = vec (V) = (Q ⊗ I) A (λ) (Q ⊗ I)T u

We can do this in 3 steps:

1. W = UQ. Let wβ be a column of W with β ∈ J .

2. For each β, yβ = A
(
λβ

)
wβ. Define Y to be the matrix with columns yβ.

3. V = YQT .

• Steps 1 and 3 each require N |I| |J| multiplications. If a matrix-vector with A (s) takes O (N) opera-
tions due to its sparsity patterns then step 2 takes O (N |J|) operations. Another advantage is that this
can be accomplished without any knowledge of the specific type of parameter dependence in A (s)
which means we have a reusable interface for this implementation.

6

4 Preconditioning

• In iterative methods, convergence and divergence of the method is affected by the condition number
of the matrix. Given an invertible matrix A, the condition number of A, κ (A) is defined by:

κ (A) =

∣∣∣∣∣λmax

λmin

∣∣∣∣∣
Where λmax and λmin are the largest and smallest eigenvalue of A, respectively.

• The smaller the condition number, the more likely the iterative method will converge and the larger
the condition number the more likely the iterative method will diverge [1]. Which also means we need
less iterations to converge for a small condition number means better convergence rate. So given the
problem of finding x such that Ax = b but supposing A is ill conditioned, i.e. it has a large condition
number. We can adjust the problem by introducing a matrix P which we construct which is easily
invertible to get a new problem:

Cx = P−1Ax = P−1b = d

Where C = P−1A is a lot better conditioned due to the construction of P which means our iterative
method is more likely to converge and converges faster. We call the matrix P the preconditioner, it is
usually very difficult to construct or find such a preconditioner.

• However the decomposition we have found makes this much easier for us. Suppose we have P ∈ RN×N

that is easily invertible. We can then construct a block diagonal preconditioner I ⊗ P−1 ∈ RN|I|×N|I|

where I ∈ R|I|×|I|. If we multiply on the left of
〈
ππT ⊗ A

〉
by our preconditioner then we get:(

I|I| ⊗ P−1
)

(Q ⊗ IN) A (λ) (Q ⊗ IN)T = (Q ⊗ IN)
(
I|J| ⊗ P−1

)
A (λ) (Q ⊗ IN)T

Where In ∈ R
n×n, by the mixed product property and commutativity of the identity matrix, I ⊗ P−1

slips past Q ⊗ I to act directly on A (λ). The non-zero blocks of the diagonal matrix
(
I|J| ⊗ P−1

)
A (λ)

are P−1A
(
λβ

)
for β ∈ J . So we only have to choose one constant matrix P to affect the parameterized

system of all quadrature points.

• A reasonable an popular choice is the mean P = 〈A〉. The next part in the paper, they analyse different
preconditioners for solution of the parametrised elliptic PDE with homogeneous Dirichlet boundary
conditions. The following different ways were used to calculate the preconditioners:

1. P = I which means no preconditioning.

2. P = A (sr) where sr ∈ S is randomly picked.

3. P = A (smax) where A (smax) is the matrix with the largest eigenvalue for s ∈ S.

4. P = A (smin) where A (smin) is the matrix with the smallest eigenvalue for s ∈ S.

5. P = A (smid) where smid is the midpoint of the domain S.

6. P = 〈A〉.

The results of this analysis was that the methods 5 and 6 got the convergence with the lowest number
of iterations. Methods 2-6 converged much faster in terms of iterations than method 1. However the
preconditioning made little or no difference to the iteration time. Which means if preconditioning
takes slightly more time per iteration, it is worth it as the solution converges in much fewer iterations.

7

5 Summary

• In the paper, they show this method applied to heat transfer with uncertain material properties.

• We have looked at the system arising from a spectral Galerkin approximation of a vector value solution
x (s) to the parameterized matrix equation

A (s) x (s) = b (s)

• These problems come up in PDE models where the parameterized inputs or random inputs are dis-
cretized in space and a Galerkin projection with an orthonormal basis is used for approximation in the
parameter space.

• We then derived the system we needed to solve and found a decomposition of the matrix involved in
this system.

• This decomposition helped us get possible bounds on the spectrum of the matrix.

• We worked out that we could use Krylov based iterative methods to solve the system due to the
spareness of the system.

• We also worked out that matrix-vector multiplications of Galerkin matrix can be computed with only
the action of A (s) on a vector point in the parameter space. This gave us a reusable interface for the
implementation of the Galerkin method.

• Due to the decomposition we looked at the possibility of using and constructing precondtitioners to
get better convergence. By doing a specific study we saw that the midpoint and mean method to find
the preconditioner gave us the best results.

References

[1] A. Pyzara, B. Bylina and J. Bylina. ”The influence of a matrix condition number on iterative methods
convergence”. ISBN 978-83-60810-22-4 pp. 459464

8

