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Introduction

This revision guide for ST111/112 Probability A & B has been designed as an aid to revision, not a
substitute for it. It contains a lot of theory and NO EXAMPLES, but the main point of Probability is
not theory, it’s practice. So, the best way to revise is to use this revision guide as a quick reference
and just keep trying example done in lectures, example sheets and past exam questions. The recom-
mendedtextbook by the lecturer is “Probability (Springer Texts in Statistics)” by Pitman so
make sure you do as many examples as you can from this book. Ensure that you:
• practise, practise, PRACTISE!!!

Finally, good luck on the exam!

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance, or make you 20% cooler. Use of this guide will
increase entropy, contributing to the heat death of the universe.

Authors

Originally written in 2015 by J. Tolia (j.tolia@warwick.ac.uk). Based upon lectures given by Sigurd
Assing 2014-2015. Any corrections or improvements should be entered into our feedback form at
http://tinyurl.com/WMSGuides (alternatively email revision.guides@warwickmaths.org).
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Probability A

1 Distributions

To formally define probabilities, we take a sample space Ω, and assign probabilities to events, i.e. subsets
of Ω:

Let us start with looking at the following terminology:

Event Language Set Language Set Notation Venn Diagram

Outcome space or sample space Whole set Ω

Ω

Event Subset of Ω A,B,C

Ω
A

Impossible event Empty set ∅

Ω

Not A, opposite of A Complement of A Ac or Ω\A

Ω
A

A or B Union of A and B A ∪B

Ω

A B

A and B Intersection of A and B AB or A ∩B

Ω

A B

A and B are mutually exclusive A and B are disjoint A ∩B = φ

Ω

A B

If A then B A is a subset of B A ⊆ B

Ω

A B

B partitioned into B1, . . . , Bn B = B1 ∪ · · · ∪Bn, Bi ∩Bj = φ, i 6= j

Ω

B
B1B2

B3 B4

Axioms 1.1 (Axioms of Probability P for finite Ω). The following can be thought of as rules for the
map P1 : P (Ω) → [0, 1] where Ω is a finite set and P (Ω) is the power set of Ω i.e. the collection of all
subsets of Ω:

1. P [B] ≥ 0, ∀B ∈ Ω.
2. P [B] = P [B1] + · · ·+ P [Bn] if B is partitioned into B1, . . . , Bn.
3. P [Ω] = 1

Proposition 1.2. Let A,B ⊆ Ω then:
1. Law of Complements: P(Ac) = 1− P(A).
2. Difference Rule: Suppose A ⊆ B then P [A] ≤ P [B] and P [B \A] = P [B]− P [A].
3. Inclusion - Exclusion: P [A ∪B] = P [A] + P [B]− P [A ∩B].
4. P [∅] = 0.

Proof. We prove these using the axioms of probability we stated earlier.
1. As Ω = A + Ac, we have 1 = P [Ω] = P [A] + P [Ac] as A and Ac form a partition of Ω, finally we

subtract P [A].

1We call P the probability distribution over Ω.
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2. Let A ⊆ B, we have B = A ∪ (B \A). Hence P [B] = P [A] + P [B \A] as A and B \ A form a
partition of B and rearranging gives us P [B \A] = P [B]−P [A]. We have that P [B \A] ≥ 0 which
implies P [B]− P [A] ≥ 0.

3. We can write A ∪ B = A ∪ (B \ (A ∩B)) which forms a partition, draw a Venn diagram if this is
not clear. We have P [A ∪B] = P [A] +P [B \ (A ∩B)] = P [A] +P [B]−P [A ∩B] by the difference
rule.

4. Take A = Ω then Ac = ∅ and use the law of complements.

Definition 1.3 (Conditional Probability). Let P be an arbitrary probability distribution over Ω and
A,B ⊆ Ω such that P [B] > 0. We define the conditional probability of A given B by:

P [A|B] =
P [A ∩B]

P [B]

Remark 1.4. When working on examples to do with conditional probabilities, it might be useful to use
tree diagrams.

Lemma 1.5 (Multiplication Law). From the definition of conditional probability we get the multiplica-
tion law:

P [A ∩B] = P [A|B] · P [B]

Theorem 1.6 (Law of Total Probability). Let B1, . . . , Bn form a partition of Ω with P [Bi] > 0 for all
i = 1, . . . , n. Then for A ⊂ Ω:

P [A] =

n∑
i=1

P [A|Bi] · P [Bi]

Proof. First, we see that the sets (A ∩B1) , . . . , (A ∩Bn) form a partition of A. So by the second
statement in the axiom, we get P [A] =

∑n
i=1 P [A ∩Bi]. Finally, using the multiplication law to get

P [A ∩Bi] = P [A|Bi] · P [Bi] for all i = 1, . . . , n, we have P [A ∩Bi] =
∑n
i=1 P [A|Bi] · P [Bi].

Theorem 1.7 (Baye’s Rule). Let A ⊆ Ω be an event and B1, . . . , Bn form a partition of Ω. Then for
all i = 1, . . . n:

P [Bi|A] =
P [Bi] · P [A|Bi]

P [B1] · P [A|B1] + · · ·+ P [Bn] · P [A|Bn]
=

P [Bi] · P [A|Bi]∑n
j=1 P [Bj ] · P [A|Bj ]

Definition 1.8 (Independence). Let A,B ⊆ Ω be two events. We say that A and B are independent
events if:

P [A ∩B] = P [A] · P [B]

2 Repeated Trials and Sampling

Definition 2.1 (Independence of multiple events). Suppose we have events A1, . . . , An ⊆ Ω, we say
these events are independent if:

P [Ai1 ∩ · · · ∩Aik ] = P [Ai1 ]× · · · × P [Aik ]

for all 1 ≤ i1 < · · · < ik ≤ n and k = 1, . . . , n.

Definition 2.2. Suppose Ω is partitioned into 2 sets, i.e. Ω = {0, 1} or Ω = {A,Ac}, where the event
A can be thought of as success and Ac can be thought of as failure. Then the Bernoulli(p) distribution
over Ω where p ∈ [0, 1] is given by:

P [A] = p, P [Ac] = 1− P [A] = 1− p
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Proposition 2.3. Suppose we are looking at Bernoulli(p) distribution then we have the following:

P [k successes in n trials] =

(
n

k

)
pk (1− p)n−k

where
(
n
k

)
= n!

(n−k)!k! .

Definition 2.4. The distribution P over Ω = {0, 1, . . . , n} satisfying

P [{k}] =

(
n

k

)
pk (1− p)n−k , k = 0, . . . , n

is called the binomial(n, p) distribution

Definition 2.5. The distribution P over Ω = {0, 1, . . . , n} satisfying

P [{g}] =

(
G
g

)(
N−G
n−g

)(
N
n

) , g = 0, . . . , n

for some n,G,N ∈ N such that n ≤ N,G ≤ N , is called hypergeometric(n,N,G) distribution.

3 Random Variables

We continue assuming that Ω is a finite outcome space throughout this section.

Definition 3.1 (Random Variable). A function X : Ω → R is called a random variable. The range of
X is the set of all possible values X can take so range(X) := {X (ω) : ω ∈ Ω}.
Proposition 3.2. Let X : Ω→ R be a random variable and P be a distribution over Ω. Then following
map defines a distribution over range(X), let B ⊆ range(X):

B 7→ P [X ∈ B] := P [{ω ∈ Ω : X (ω) ∈ B}]

This distribution is called the distribution of the random variable X.

Proof. We have to show that the distribution of the random variable X follows the three statement in
the axiom of probability distribution.

1. P [X ∈ B] = P [{ω ∈ Ω : X (ω) ∈ B}] ≥ 0 for all B ⊆ range(X), as P itself is a distribution on Ω.
2. Let B1, . . . , Bn be a partition of B ∈ range(X) then {ω ∈ Ω : X (ω) ∈ B1}, . . . , {ω ∈ Ω : X (ω) ∈
Bn} is a partition of {ω ∈ Ω : X (ω) ∈ B}, therefore:

P [X ∈ B] = P [{ω ∈ Ω : X (ω) ∈ B}]
= P [{ω ∈ Ω : X (ω) ∈ B1}] + · · ·+ P [{ω ∈ Ω : X (ω) ∈ Bn}]
= P [X ∈ B1] + · · ·+ P [X ∈ Bn]

3. P [X ∈ range(X)] = P [{ω ∈ Ω : X (ω) ∈ range(X)}] = 1 as X is a function from Ω.

Remark 3.3. The distribution of the random variable X is defined by P [X = x] where x ∈ range(X)
because

P [X ∈ B] =
∑
x∈B

P [X = x] , ∀B ⊆ range(X)

Example 3.4. Let us look at the random variable on the outcome space Ω = {heads,tails} then define
X by X (heads) = 1, X (tails) = 0, hence range(X) = {0, 1}. Suppose we are looking at a fair coin
then P [{heads}] = 0.5 = P [{tails}]. Then P [X = 1] = P [{ω ∈ Ω : X (ω) = 1}] = P [{heads}] = 0.5.
Similarly P [X = 0] = P [{ω ∈ Ω : X (ω) = 0}] = P [{tails}] = 0.5.

Lemma 3.5. Let X be a random variable and f : R→ R be a function then Z = f(X) is also a random
variable.

Remark 3.6. The distribution of Z = f(X) is determined by:

P [Z = z] = P [f(X) = z] =
∑

x∈range(X),z=f(x)

P [X = x] , z ∈ range(Z)
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3.1 Joint Distribution

Definition 3.7. Let X,Y : Ω→ R be random variables and P be a distribution over Ω. We define the
range(X,Y ) := {(x, y) : x ∈ range(X), y ∈ range(Y )}. The joint distribution of (X,Y ) is determined by
p : range (X,Y )→ [0, 1] with:

p (x, y) := P [X = x, Y = y] , (x, y) ∈ range (X,Y )

where P [X = x, Y = y] := P [{ω ∈ Ω : X (ω) = x and Y (ω) = y}].

Lemma 3.8. Let (X,Y ) be a pair of random variables whose distribution is given by p (x, y) for x ∈
range(X), y ∈ range(Y ). Then the marginal distributions of X and Y are given respectively by:

P [X = x] =
∑

y∈range(Y )

p (x, y)

P [Y = y] =
∑

x∈range(X)

p (x, y)

Proof. We have that ∪y∈range(Y ){X = x, Y = y} forms a partition of {X = x}, it may be useful for you
to write these sets in terms of ω ∈ Ω. Now using the second statement in the axiom of probability, we
get:

P [X = x] = P

 ⋃
y∈range(Y )

(X = x, Y = y)

 =
∑

y∈range(Y )

P [X = x, Y = y] =
∑

y∈range(Y )

p (x, y)

Definition 3.9. The following two definitions give us intuition on the different ways two random variables
can be similar.

1. Let X : Ω1 → R be a random variable with P1 be a distribution over Ω1 and let Y : Ω2 → R be
a random variable with P2 be a distribution over Ω2. If range(X) = range(Y ) and P1 [X = x] =
P2 [Y = x] for all x ∈ range(X) then we say that X and Y have the same distribution.

2. Let X,Y : Ω → R be random variables on the same outcome space Ω and P is a probability
distribution over Ω. If we have the following:

1 = P [X = Y ] := P [{ω ∈ Ω : X (Ω) = Y (ω)}]

then we say that X and Y are equal and write X = Y .

Definition 3.10. The following are probability of events determined by random variables X,Y : Ω→ R
where P is the probability distribution on Ω. We omit writing x ∈ range(X) and y ∈ range(Y ) and just
write x and y instead in the following statements.

1. P [X < Y ] :=
∑
x<y p (x, y) =

∑
x

∑
y:y>x p (x, y).

2. P [X = Y ] :=
∑
x=y p (x, y) =

∑
x p (x, x).

3. P [X + Y = z] :=
∑
x+y=z p (x, y) =

∑
x p (x, z − x).

4. P [g (X,Y ) = z] :=
∑
g(x,y)=z p (x, y) =

∑
x

∑
y:g(x,y)=z p (x, y) for any g : R2 → R.

Definition 3.11 (Conditional Distribution of Random Variables). Let (X,Y ) be a pair of random
variables and P be a distribution on Ω. Given A ⊆ Ω, the following defines the conditional distribution
of Y given A:

P [Y ∈ B|A] , B ⊆ range(Y )

The conditional distribution is determined by P [Y = y|A] for y ∈ range(Y ).

Remark 3.12. We can write the event {X = x, Y = y} as {X = x} ∩ {Y = y} so using the definition
of conditional probability from the first section we have:

p (x, y) = P [X = x, Y = y] = P [X = x] · P [Y = y|X = x]
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Definition 3.13 (Independence of Random Variables). Let X,Y Ω→ R be random variables and P be
the probability distribution on Ω. We say X and Y are independent if and only if for all x ∈ range(X), y ∈
range(Y ) we have:

P [X = x, Y = y] = P [X = x] · P [Y = y]

Remark 3.14. If X and Y are independent then we have for all A ⊆ range(X), B ⊆ range(Y ), we have
P [X ∈ A, Y ∈ B] = P [X ∈ A] · P [Y ∈ B].

Remark 3.15 (Joint distributions of more than two random variables). Let X1, . . . , Xn : Ω → R be
random variables. The joint distribution of these random variables is determined by p : range (X1) ×
· · · × range (Xn)→ [0, 1] satisfying∑

x1∈range(X1)

· · ·
∑

xn∈range(Xn)

p (x1, . . . , xn) = 1

where p (x1, . . . , xn) := P [X1 = x1, . . . , Xn = xn] for all x1 ∈ range (X1) , . . . , xn ∈ range (Xn). Finally
we say X1, . . . , Xn are independent if and only if for all x1 ∈ range (X1) , . . . , xn ∈ range (Xn), we have:

p (x1, . . . , xn) = P [X1 = x1]× · · · × P [Xn = xn]

3.2 Expectation

Definition 3.16. Let X : Ω → R be a random variable and P be a distribution over Ω, we define the
real number E [X], known as the expectation of X by:

E [X] =
∑

x∈range(X)

x · P [X = x]

Example 3.17. Let us look at the random variable X which has range(X) = {0, 1} and P [X = 1] = 0.5
and P [X = 0] = 0.5. We constructed this random variable from a outcome space of a fair coin. The
expectation of this random variable is:

E [X] =
∑

x∈range(X)

x · P [X = x] = 1 · P [X = 1] + 0 · P [X = 0] = 0.5

Example 3.18 (Indicators). Let Ω be an outcome space and P be the probability distribution on Ω.
Fix A ⊆ Ω. We define the indicator random variable 1A : Ω→ R by:

1A (ω) =

{
1 if ω ∈ A
0 otherwise

Note that range(1A) = {0, 1} so:

E [1A] = 0 · P [1A = 0] + 1 · P [1A = 1] = P [{ω ∈ Ω : 1A (ω) = 1}] = P [{ω ∈ A}] = P [A]

Theorem 3.19 (Functions of Random Variables). Let X1, . . . , Xn : Ω→ R be random variables and P
be a distribution on Ω. For any g : Rn → R, we have:

E [g (X1, . . . , Xn)] =
∑

x1∈range(X1)

· · ·
∑

xn∈range(Xn)

g (x1, . . . , xn) · P [X1 = x1, . . . , Xn = xn]

Proof. We prove this for the case n = 1. Let X be a random variable, by definition:

E [g (X)] =
∑

y∈range(g(X))

y · P [g(X) = y]

where
y · P [g(X) = y] = y ·

∑
x:g(x)=y

P [X = x] =
∑

x:g(x)=y

g(x) · P [X = x]
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finally:

E [g (X)] =
∑

y∈range(g(X))

∑
x:g(x)=y︸ ︷︷ ︸∑

x∈range(X)

g(x) · P [X = x]

Theorem 3.20 (Addition Rule). Let X1, . . . , Xn be random variables then:

E [X1 + · · ·+Xn] = E [X1] + . . .E [Xn]

Proof. We prove this for case n =. Let (X,Y ) be a pair of random variables, with joint distribu-
tion function p (x, y), x ∈ range(X) and y ∈ range(Y ). We have P [X = x] =

∑
y∈range(Y ) p(x, y) and

P [Y = y] =
∑
x∈range(X) p(x, y). Therefore we have:

E [X] =
∑

x∈range(X)

x · P [X = x] =
∑

x∈range(X)

∑
y∈range(Y )

x · p(x, y)

Similarly E [Y ] =
∑
y∈range(Y )

∑
x∈range(X) y · p(x, y). Now applying the formula from previous theorem

with g(x, y) = x+ y, and since we can interchange the order of finite sums, we get:

E [X + Y ] =
∑

x∈range(X)

∑
y∈range(Y )

(x+ y) · p(x, y)

=
∑

x∈range(X)

∑
y∈range(Y )

x · p(x, y) +
∑

y∈range(Y )

∑
x∈range(X)

y · p(x, y)

= E [X] + E [Y ]

Theorem 3.21 (Expectation of Product of Independent Random Variables). Let X1, . . . , Xn be inde-
pendent random variables then:

E [X1 × · · · ×Xn] = E [X1]× · · · × E [Xn]

Proof. We prove this for case n =. Let (X,Y ) be a pair of independent random variables. Then:

E [X × Y ] =
∑

x∈range(X)

∑
y∈range(Y )

xy · P [X = x, Y = y]︸ ︷︷ ︸
=P[X=x]×P[Y=y] by independence

=
∑

x∈range(X)

∑
y∈range(Y )

(xP [X = x]) (yP [Y = y])

=

 ∑
x∈range(X)

xP [X = x]

×
 ∑
y∈range(Y )

yP [Y = y]


= E [X]× E [Y ]

Theorem 3.22 (Markov Inequality). Let X : Ω→ [0,∞) be a random variable and P be a distribution
on Ω. Then for any a > 0, we have:

P [X ≥ a] =
E [X]

a

Proof. As range(X) = {x ∈ R : x ≥ 0}:

E [X] =
∑
x≥0

x · P [X = x] ≥
∑
x≥a

x · P [X = x] =
∑
x≥a

a · P [X = x] = a · P [X ≥ a]
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Probability B

4 Weak Law of Large Numbers

Theorem 4.1 (Weak Law of Large Numbers). let P be probability a distribution on Ω, where Ω is finite.
Let Xi : Ω→ R, i ∈ N be a sequence of random variables such that:

1. X1, . . . , Xn are independent for all n ∈ N
2. E [Xi] = E [X1] for all i ∈ N
3. supi≥i E

[
X2
i

]
<∞

Then, for all ε > 0, we have:

lim
n→∞

= P
[∣∣∣∣X1 + · · ·+Xn

n
− E [X1]

∣∣∣∣ ≥ ε] = 0

5 Standard Deviation and Variance

In this section, let X : Ω → R be a random variable and let P be a distribution on Ω, we still hold the
assumption that Ω is finite from Probability A. We use µ to denote the expected value of X:

µ := E [X]

Definition 5.1. 1. The variance of X, denoted by Var [X], is defined as the following:

Var [X] = E
[
(X − µ)

2
]

2. The Standard deviation of X, denotes by SD [X] or σ, is defined as the following:

SD [X] =
√

Var [X]

Remark 5.2. We have that Var [X] = E
[
X2
]
− E [X]

2
by the following:

Var [X] = E
[
(X − µ)

2
]

= E
[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE [X] + µ2

= E
[
X2
]
− 2E [X] · E [X] + E [X]

2

= E
[
X2
]
− E [X]

2

Theorem 5.3 (Chebychev’s Inequality). Let X be a random variable and k > 0, then:

P [|X − E [X]| ≥ k × SD [X]] ≤ 1

k2

Proof.

P [|X − E [X]| ≥ k × SD [X]] = P
[
|X − E [X]|2 ≥ k2 ×Var [X]

]
≤

E
[
(X − E [X])

2
]

k2 ×Var [X]

=
1

k2

Proposition 5.4. Let X1, . . . , Xn be independent random variables. Then:

Var [X1, . . . , Xn] =

n∑
i=1

Var [Xi]
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Proof. We prove the proposition for n = 2, let µ1 = E [X1] , µ2 = E [X2]. Then:

Var [X1 +X2] = E
[
(X1 +X2 − (µ1 − µ2))

2
]

= E
[
((X1 − µ1) + (X2 − µ2))

2
]

= E
[
(X1 − µ1)

2 − 2 (X1 − µ1) (X2 − µ2) + (X2 − µ2)
2
]

= E
[
(X1 − µ1)

2
]
− 2E [X1 − µ1] · E [X2 − µ2] + E

[
(X2 − µ2)

2
]

= Var [X1] + 0 + Var [X2]

Corollary 5.5. If X1, . . . , Xn are independent random variables such that Var [Xi] = Var [X1] for all
i = 1, . . . , n, then:

Var [X1 + · · ·+Xn] = n ·Var [X1]

Proposition 5.6. Let X be a random variable and c ∈ R, then:

Var [cX] = c2 Var [X]

Proof. As we have E [cX] = c · E [X] = cµ, so:

Var [cX] = E
[
(cX − cµ)

2
]

= c2E
[
(X − µ)

2
]

= c2 Var [X]

6 Normal Approximation

Definition 6.1. 1. The probability density function, denoted by φ, of the standard normal distribution
is given by:

φ (y) :=
1

2π
exp

(
−y

2

2

)
2. The cumulative distribution function, denoted by Φ, of the standard normal distribution is given

by:

Φ (x) :=

∫ x

−∞
φ (y) dy

We can use the normal distribution to approximate different distributions, such as the binomial
distribution. The normal distribution is characterised by its mean and variance, hence if we can find the
mean and the variance or standard deviation of a given distribution then we can approximate it with
the normal distribution.

Suppose we are looking at a random variable Sn which is binomially distributed with binomial(n, p),
then µ = E [Sn] = np and σ = SD [Sn] =

√
np(1− p). Then for 0 ≤ ka ≤ kb ≤ n:

P [ka ≤ Sn ≤ kb] ≈ Φ

(
kb + 1

2 − µ
σ

)
− Φ

(
ka − 1

2 − µ
σ

)
Remark 6.2 (Symmetry for Φ). Given z > 0 we have that Φ(−z) = 1 − Φ(z). This can be seen by
looking at a graph of the probability density function of the standard normal distribution φ(x) as it is
symmetric around x = 0.
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7 Poisson Distribution

Definition 7.1. Let X : Ω→ {0, 1, 2, . . . } be a random variable and P a distribution over Ω such that,
given mu > 0:

P [X = k] =
e−µµk

k!
, k = 0, 1, 2, . . .

Then we say that X has a Poisson(µ) distribution.

Remark 7.2. For X from the above definition to be a random variable, Ω has to be at least countably
infinite.

From now on we can assume that if Ω is countably infinite i.e. Ω = {ω1, ω2, . . . } and pΩ → [0, 1]
satisfies

∑∞
k=1 p (ωk) = 1 then P : P → [0, 1] satisfies Axioms 1.1, where P is given by:

P [B] =
∑
ω∈B

p(ω), B ⊆ Ω

For a random variable X defined in Definition 7.1, we calculate the expected value using the following:

E [X] =
∑

x∈range(X)

x× P [X = x] =

∞∑
k=0

k × P [X = k]

Proposition 7.3. Let X be a random variable that is distribution Poisson(µ), then the E [X] = µ and
Var [X] = µ.

Proof.

E [X] = lim
N→∞

N∑
k=0

k × P [X = k]

= lim
N→∞

N∑
k=1

k · e
−µµk

k!

= µe−µ lim
N→∞

N∑
k=1

µk−1

(k − 1)!

= µe−µ lim
N→∞

N−1∑
k=0

µk

k!

= µe−µeµ = µ

Var [X] = E
[
X2
]
− E [X]

2

= lim
N→∞

N∑
k=1

k2 · e
−µµk

k!
− µ2

= lim
N→∞

e−µ
N∑
k=2

k (k − 1)
µk

k!
+e−µ

N∑
k=1

k · µ
k

k!︸ ︷︷ ︸
=µ

− µ2

= µ2e−µ lim
N→∞

[
N∑
k=2

µk−2

(k − 2)!

]
+ µ− µ2

= µ2e−µ lim
N→∞

[
N−2∑
k=0

µk

k!

]
+ µ− µ2

= µ2e−µeµ + µ− µ2 = µ
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8 Continuous Random Variables

8.1 Probability Densities

Definition 8.1. Let P be a distribution over Ω, where Ω is uncountably infinite. Let X : Ω→ R, where
range (X) includes whole intervals. The probability density function (pdf), f : R→ R, of X is given by:

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx

with the properties:

1. f is piecewise continuous

2.
f(x) ≥ 0, ∀x ∈ R

3. ∫ ∞
−∞

f(x)dx = 1

Proposition 8.2. Let f be a probability density function of X : Ω → R, P be a distribution over Ω.
Suppose f̃ : R→ R is piecewise continuous such that f̃(x) ≥ 0,∀x ∈ R,

∫∞
−∞ f̃ (x) dx = 1 and:∫ b

a

f̃ (x) dx =

∫ b

a

f (x) dx, ∀a ≤ b

Then f̃ (x) = f (x) for all x ∈ R such that f and f̃ are continuous at x.

Proof. Let x ∈ R such that f and f̃ are continuous at x, then we have for all small enough h > 0:∫ x+h

x

f̃ (u) du =

∫ x+h

x

f (u) du

This implies:

f̃ (x) = lim
h↓0

∫ x+h

x

f̃ (u) du = lim
h↓0

∫ x+h

x

f (u) du = f (x)

Definition 8.3. Let X : Ω→ R be a random variable and P a distribution over Ω such that f : R→ R
is the probability density function of X. Assume that∫ ∞

−∞
|x| f (x) dx <∞

Then, the expectation and variance of X are defined by:

E [X] =

∫ ∞
−∞

xf (x) dx = lim
N→∞

∫ N

−N
xf (x) dx

Var [X] =

∫ ∞
−∞

(x− E [X])
2
f (x) dx = lim

N→∞

∫ N

−N
(x− E [X])

2
f (x) dx

Remark 8.4. 1. All properties we know about expectation and variance still hold.
2. If g : R→ R is a continuous function and

∫∞
−∞ |g(x)| f(x)dx <∞ where f is a probability density

function. Then:

E [g(x)] =

∫ ∞
−∞

g(x)f(x)dx
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8.2 Uniform Distribution

Definition 8.5. Let X : Ω→ R be a random variable and P a distribution over Ω such that:

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx, ∀a ≤ b

where

f(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

for some real numbers a ≤ b. Then we say that X has a uniform(a, b) distribution.

x

f(x)

1
b−a

aa b

Figure 1: Probability Density Function of Uniform(a,b) Distribution

Proposition 8.6. Let X : Ω → R be a random variable and P a distribution over Ω such that X has
uniform(a,b) distribution. Then:

E [X] =
a+ b

2
, Var [X] =

(b− a)
2

12

Proof.

E [X] =

∫ b

a

x

b− a
dx =

b2 − a2

2 (b− a)
=

(b+ a) (b− a)

2 (b− a)
=
a+ b

2

Var [X] = E
[
X2
]
− E [X]

2

=

∫ b

a

x2

b− a
dx− a2 + 2ab+ b2

4

=
b3 − a3

3 (b− a)
− a2 + 2ab+ b2

4

=
(b− a)

(
b2 + ab+ a2

)
3 (b− a)

− a2 + 2ab+ b2

4

=
4b2 + 4ab+ 4a2 − 3a2 − 6ab− 3b2

12

=
(b− a)

2

12

8.3 Normal Distribution

Definition 8.7. Let Z : Ω→ R be a random variable and P a distribution over Ω such that:

P [a ≤ Z ≤ b] =

∫ b

a

φ(y)dy, ∀a ≤ b

where φ is a probability density function defined in Definition 6.1. Then we call Z a standard normal
random variable and Z has a normal(0, 1) distribution.
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Definition 8.8. Let X : Ω→ R be a random variable and P a distribution over Ω such that:

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx, ∀a ≤ b

where

f(x) =
1√

2πσ2
· exp

(
− (x− µ)

2

2σ2

)
, x ∈ R

for some µ ∈ R and σ > 0. Then X is said to have a normal
(
µ, σ2

)
distribution.

x

f(x)

µ

Figure 2: Probability Density Function of Normal
(
µ, σ2

)
Distribution

Proposition 8.9. Let Z and X be random variables with normal(0,1) and normal
(
µ, σ2

)
distributions,

respectively. Then X = µ+ σZ.

Proof. Fix a ≤ b, we want to show P [a ≤ X ≤ b] = P [a ≤ µ+ σZ ≤ b]:

P [a ≤ µ+ σZ ≤ b] = P
[
a− µ
σ
≤ Z ≤ b− µ

σ

]
=

∫ (b−µ)/σ

(a−µ)/σ

1√
2π
e−y

2/2dy

Substitute x = µ+ σy =

∫ b

a

1√
2π
· exp

(
− (x− µ)

2

2σ2

)
dx

σ

= P [a ≤ X ≤ b]

Proposition 8.10. Let Z : Ω → R be a random variable and P a distribution over Ω such that Z has
normal(0,1) distribution. Then:

E [Z] = 0, Var [Z] = 1

Proof.

E [Z] =
1√
2π

∫ ∞
−∞

xe−x
2/2dx =

1√
2π

[
−e−x

2/2
]∞
−∞

= 0

Var [Z] = E
[
X2
]
− E [X]

2
=

1√
2π

∫ ∞
−∞

x2e−x
2/2dx− 0

We need to integrate 1√
2π

∫∞
−∞ x2e−x

2/2dx. We use integration by parts:∫ ∞
−∞

u(x) · dv
dx

(x)dx = [u(x) · v(x)]
∞
−∞ −

∫ ∞
−∞

du

dx
(x) · v(x)dx



ST111/112 Probability A & B 13

Where:

u(x) = x,
du

dx
(x) = 1, v(x) = −ex

2/2,
dv

dx
(x) = xe−x

2/2

Therefore we get:

1√
2π

∫ ∞
−∞

x2e−x
2/2dx =

1√
2π

[
x · −e−x

2/2
]∞
−∞
− 1√

2π

∫ ∞
−∞
−e−x

2/2dx

= 0 +
1√
2π

∫ ∞
−∞

e−x
2/2dx

Now we need to integrate 1√
2π

∫∞
−∞ e−x

2/2dx. We know this is equal to 1 as 1√
2π
ex

2/2 is a probability

density function. However we will show how to calculate this integral using polar coordinates:(
1√
2π

∫ ∞
−∞

e−x
2/2dx

)2

=
1

2π

(∫ ∞
−∞

e−x
2/2dx

)
·
(∫ ∞
−∞

e−y
2/2dy

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

(
−x

2 + y2

2

)
dxdy

Change to polar coordinates =
1

2π

∫ 2π

0

∫ ∞
0

exp

(
−r

2

2

)
rdrdθ

=
1

2π

∫ 2π

0

dθ ·
∫ ∞
0

re−r
2/2dr

=
[
−e−r

2/2
]∞
0

= 0− (−1)

= 1

This means that Var [Z] = 1.

Corollary 8.11. Let X : Ω → R be a random variable and P a distribution over Ω such that X has
normal

(
µ, σ2

)
distribution. Then:

E [X] = µ, Var [X] = σ2

Proof. Let Z be a random variable with normal(0,1) distribution then from Proposition 8.9, we can write
X = µ+ σZ. Then:

E [X] = E [µ+ σZ] = µ+ σE [Z] = µ+ 0

Var [X] = Var [µ+ σZ] = Var [µ] + Var [σZ] = 0 + σ2 Var [Z] = σ2

8.4 Gamma and Exponential Distribution

Definition 8.12. Let X : Ω→ R be a random variable and P a distribution over Ω such that:

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx, ∀a ≤ b

where

f(x)

{(
λe−λx (λx)

r−1
)
/ (r − 1)! if u > 0

0 if u ≤ 0

for some λ > 0 and integer r ≥ 1. Then we say that X has a gamma(r, λ) distribution.

Proposition 8.13. Let X : Ω→ R be a random variable and P a distribution over Ω such that X has
gamma(r, λ) distribution. Then:

E [X] =
r

λ
, Var [X] =

r

λ2
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Definition 8.14. Let X : Ω→ R be a random variable and P a distribution over Ω such that:

P [a ≤ X ≤ b] =

∫ b

a

f (x) dx, ∀a ≤ b

where

f(x)

{
λe−λx if u > 0

0 if u ≤ 0

for some λ > 0. Then we say that X has an exponential(λ) distribution.

Remark 8.15. Exponential distribution is just a special case of the gamma distribution where r = 1.

Proposition 8.16. Let X : Ω→ R be a random variable and P a distribution over Ω such that X has
exponential(λ) distribution. Then:

E [X] =
1

λ
, Var [X] =

1

λ2

Theorem 8.17 (Memoryless Property). Let T be a positive random variable, i.e. T : Ω → (0,∞) and
P is a distribution over Ω.

T has an exponential(λ) distribution for some λ > 0

m

P [T > t+ s|T > t] = P [T > s] , ∀s, t ≥ 0

Proof. We only show the ⇓ part. Fix s, t ≥ 0, suppose T : Ω → (0,∞) is a random variable and P is a
distribution over Ω such that T has an exponential(λ) distribution for some λ > 0. Then:

P [T > t+ s|T > t] =
P [{T > t+ s} ∩ {T > t}]

P [T > t]

As {T > t+ s} ∩ {T > t} = {T > t+ s} =
P [T > t+ s]

P [T > t]

=
exp (−λ (t+ s))

exp (−λt)
= exp (−λs)
= P [T > s]
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