
Scheduler Project

Roseanna Ferguson
&

Joy Tolia

December 1, 2018

Contents

1 Overview 2
1.1 Summary . 2
1.2 Metadata . 2
1.3 Dependency Tree . 2
1.4 Collapsing Tree and Check for Changes . 2
1.5 Building Schedule . 2
1.6 Component . 3

2 Examples 3

3 Simple Schedule 4

4 Schedule with Loops 5

5 Collapsing Schedule 6

6 Timing Schedule 7

1

1 Overview

1.1 Summary

The objectives of Scheduler are

• To improve efficiency of the code

• Encourage reuse of code

• Simplify the process of iterating through key parameters

Firstly, the user breaks down a process (referred to as a recipe) into a series of components. This information
together with parameters are combined in a yaml file. By using pre defined dependencies Scheduler calculates
the order in which components can be run and which components can be run in parallel. Finally, Scheduler
uses serialisation and checks if a component is required to be re-run. The key functions are summarized
below. Code is available on: https://github.com/joy-rosie/generic.git

1.2 Metadata

• Reads data from a yaml file. It structures the data into a list of components.

• Substitutes named variables and creates components for loops of parameters.

• Joins together information from recipes and components to create a list of components with all infor-
mation needed.

1.3 Dependency Tree

• Given we have all the information about the components and their dependencies, we can create the
dependency tree.

• Starting from the root, we see which components are final components and recursively find the depen-
dent components.

1.4 Collapsing Tree and Check for Changes

• Given the dependency tree, we then go top down and merge components with the same inputs and
parameters.

• We also check for changes in parameters as if we are rerunning the schedule then we do not want to
run components which have had no changes.

• But when we do need to rerun a component, we need to make sure we rerun all the dependent compo-
nents.

1.5 Building Schedule

• Given the dependency tree, we start from the components with no inputs and put them on the first
level.

• Next we look at the components dependent on the components on the first level and put them on the
second level and so on.

• All components on the same level can be run in parallel.

2

https://github.com/joy-rosie/generic.git

1.6 Component

• This is a parent class which holds wrapper functions for components.

• Example of one wrapper function is when we run a component, we will need to load all the input data
from the dependent components.

• All components will be inheriting from the parent class.

• Components will be group by a component type. Each component type can have multiple imple-
mentations. For example, price data may be a component type with the implementations Quandl,
Bloomberg and Reuters.

2 Examples

There are two examples included of how Scheduler can be implemented.

• Machine Learning: Scheduler is used to compare six different machine learning models used to
categorize data.

• Back Testing: Scheduler is used to back test two different strategies on the same price data

3

3
S
im

p
le

S
ch

e
d
u
le

4

4
S
ch

e
d
u
le

w
it
h

L
o
o
p
s

5

5
C
o
ll
a
p
si
n
g
S
ch

e
d
u
le

6

6
T
im

in
g
S
ch

e
d
u
le

7

	Overview
	Summary
	Metadata
	Dependency Tree
	Collapsing Tree and Check for Changes
	Building Schedule
	Component

	Examples
	Simple Schedule
	Schedule with Loops
	Collapsing Schedule
	Timing Schedule

