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Introduction

This revision guide for MA209 Variational Principles has been designed as an aid to revision, not a
substitute for it. This module consists a few derivations which are important and there is a lot of solving
linear coefficient ODEs. The exams are very similar each year so practice all derivations and do examples
from the past papers.

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance. Use of this guide will increase entropy,
contributing to the heat death of the universe. Contains no GM ingredients. Your mileage may vary.
All your base are belong to us.

Authors

This revision guide for MA209 has been designed as an aid to revision, not a substitute for it. Use at
your own risk. Written by Joy Tolia and Matt Rigby.
Based upon lectures given by Prof. John Rawnsley at the University of Warwick, 2012-2013.
Any corrections or improvements should be entered into our feedback form at http://tinyurl.com/WMSGuides
(alternatively email revision.guides@warwickmaths.org).
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1 Fundamental Theorem of Calculus of Variations

Theorem 1.1 (Fundamental Theorem of Calculus of Variations). If v(x) is a continuous function on
[x1, x2] such that ∫ x2

x1

v(x)u(x)dx = 0

for all u ∈ C2 with u(x1) = u(x2) = 0 then

v(x) = 0 ∀x ∈ [x1, x2] .

Proof. Assume that
∫ x2

x1
v(x)u(x)dx = 0 for all u ∈ C2 with u(x1) = u(x2) = 0. Suppose ∃x0 ∈ (x1, x2)

where v(x0) > 0. Then since v is continuous, ∃δ > 0 such that v(x) > 0 ∀x ∈ (x0 − δ, x0 + δ). Suppose
we can find u ∈ C2 such that

u(x) =

{
u(x) > 0 ∀x ∈ (x0 − δ, x0 + δ)

0 otherwise

Then u(x)v(x) is strictly positive for all x ∈ (x0 − δ, x0 + δ) and zero otherwise. Hence we have:

∫ x2

x1

v(x)u(x)dx =

∫ x0+δ

x0−δ
v(x)u(x)dx > 0

This is a contradiction, hence v(x) = 0 for all x ∈ [x1, x2].

Remark 1.2. We can always find a u that we need in the above proof, for example:

u(x) =

{
(x0 + δ − x)3(x− x0 + δ)3 ∀x ∈ (x0 − δ, x0 + δ)

0 otherwise

2 Euler-Lagrange Equation

Definition 2.1. Let y be a function of x, f be a function of x, y, y′ and I(y) =
∫ x2

x1
f(x, y, y′)dx be a

functional then its Euler-Lagrange equation is given by

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0.

Theorem 2.2. Suppose y ∈ C2 is a function of x and f ∈ C2 is a function of x, y, y′. Then, any critical
point y(x) of the functional

I(y) =

∫ x2

x1

f(x, y, y′)dx

satisfies its Euler-Lagrange equation:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0.

Proof. Suppose y ∈ C2 is a critical point of I. Let u ∈ C2 satisfy u(x1) = u(x2) = 0, and consider
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gu(t) = I(y + tu). gu(t) has a critical point at t = 0, hence:

d

dt
(gu(t))

∣∣∣∣
t=0

=
d

dt
(I(y + tu))

∣∣∣∣
t=0

=
d

dt

∫ x2

x1

f(x, y + tu, y′ + tu′)dx

∣∣∣∣
t=0

=

∫ x2

x1

(
d

dt
f(x, y + tu, y′ + tu′)

∣∣∣∣
t=0

)
dx

=

∫ x2

x1

(
u
∂f

∂y
+ u′

∂f

∂y′

)
dx

Integrating by parts we get:

=

∫ x2

x1

u
∂f

∂y
dx+

[
u
∂f

∂y′

]x2

x1

−
∫ x2

x1

u
d

dx

(
∂f

∂y′

)
dx

As u(x1) = 0 = u(x2) :

=

∫ x2

x1

u

(
∂f

∂y
− d

dx

(
∂f

∂y′

))
dx = 0

Apply the fundamental theorem of calculus of variations with v = ∂f
∂y −

d
dx

(
∂f
∂y′

)
then we have ∂f

∂y −
d
dx

(
∂f
∂y′

)
= 0.

Proposition 2.3. Suppose f has no explicit x dependence and satisfies the Euler-Lagrange equation.
Then, f − y′ ∂f∂y′ is constant.

Proof. As f has no explicit x dependence, ∂f∂x = 0.

d

dx

(
f − y′ ∂f

∂y′

)
=

∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ d

dx

(
∂f

∂y′

)
= y′

(
∂f

∂y
− d

dx

(
∂f

∂y′

))
= 0 (By E-L equation)

Therefore f − y′ ∂f∂y′ is constant.

Definition 2.4. Let I(y) =
∫ x2

x1
f(x, y, y′)dx be a functional then if it has no explicit x dependence.

Then ***its*** 1st Integral is given by

f − y′ ∂f
∂y′

.

When y is sufficiently smooth, this theory above extends to when f is a function of multiple derivatives
of y.

Proposition 2.5. Suppose y ∈ Cn+1 is a function of x and f ∈ Cn+1 is a function of x, y, y′, . . . , y(n),
then any critical point y(x) of the functional

I(y) =

∫ x2

x1

f(x, y, y′, . . . , y(n))dx

satisfies the following equation:

∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
+ . . .+ (−1)n

dn

dxn

(
∂f

∂y(n)

)
= 0
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Proof. Suppose y ∈ Cn+1 is critical point of I. Let u ∈ Cn such that u(x1) = u(x2) = . . . = u(n−1)(x1) =
u(n−1)(x2) = 0, and consider gu(t) = I(y + tu). gu(t) has a critical point at t = 0, hence:

d

dt
gu(t)

∣∣∣∣
t=0

=

∫ x2

x1

u
∂f

∂y
+ u′

∂f

∂y′
+ . . .+ u(n)

∂f

∂y(n)
dx

Integrating by parts multple times and

as u(x1) = u(x2) = . . . = u(n−1)(x1) = u(n−1)(x2) = 0 we have:

=

∫ x2

x1

u

(
∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
+ . . .+ (−1)n

dn

dxn

(
∂f

∂y(n)

))
dx

= 0

Applying the Fundamental Theorem of Calculus of Variations we get the result.

This theory also extends to the case where f is a function of more than one variable.

Proposition 2.6. Suppose x, y ∈ C2 are functions of t and f ∈ C2 is function of t, x, y, ẋ, ẏ, then any
critical point (x(t), y(t)) of the functional I(x, y) =

∫ t2
t1
f(t, x, y, ẋ, ẏ)dt satisfies the following equations:

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0

∂f

∂y
− d

dt

(
∂f

∂ẏ

)
= 0

Proof. Let u1, u2 ∈ C2 such that u1(x1) = u1(x2) = u2(x1) = u2(x2) = 0 and consider

gu1,u2
(h1, h2) = I(x+ h1u1, y + h2u2).

If (x(t), y(t)) is a critical point of I(x, y) then gu1,u2
(h1, h2) has a critical point at (h1, h2) = (0, 0) so we

have:
∂gu1,u2

∂h1
(0, 0) = 0,

∂gu1,u2

∂h2
(0, 0) = 0

Looking at the partial derivative of gu1,u2
with respect to h1 we have:

∂

∂h1
gu1,u2

(0, 0) =
d

dh1
I(x+ h1u1, y)

∣∣∣∣
h1=0

Therefore x is a critical point of the functional x 7→ I(x, y) with y fixed. Hence x satisfies its Euler-
Lagrange equation:

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0

Similarly considering the partial derivative of gu1,u2 with respect to h2 we get that y satisfies its Euler-
Lagrange equation.

3 Fermat’s Principle for Optics

Light in a transparent medium travels along trajectories whose shape is determined by the speed of light
c. In a 2-D medium the speed at (x, y) is given by a function c(x, y).

Fermat’s Principle: Light travels along a path in a transparent medium between two points cho-
sen to minimise the time taken amongst all possible paths joining those two points.

Proposition 3.1. Let the points (x1, y1) and (x2, y2) be in a medium where the speed of light is c(x, y).
Then the path of light, y(x) between the two points is given by the critical point of the following
functional:

T (y) =

∫ x2

x1

√
1 + (y′)2

c(x, y)
dx
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Proof. The time taken by light to travel from (x1, y1) to (x2, y2) in a medium where the speed of light
is c(x, y) is given by:

T (y) = t2 − t1

=

∫ t2

t1

dt

=

∫ s2

s1

ds
ds
dt

=

∫ s2

s1

ds

c(x, y)

=

∫ x2

x1

√
1 + (y′)2

c(x, y)
dx

Then by Fermat’s Principle we have that light travels on the path y(x) which minimises the above
functional.

Proposition 3.2. Let the points (x1, y1) and (x2, y2) be in a medium where the speed of light only
depends on y, hence c = c(y). Then ∃D ∈ R such that

1

c(y)
√

1 + (y′)2
= D.

Proof. Observing that f(x, y, y′) =

√
1+(y′)2

c(y) as f has no explicit x dependence, and that any path light

takes is an extremal of the functional T (y) defined above, the first integral of T , f − y′ ∂f∂y′ is constant.
Also we see:

f − y′ ∂f
∂y′

=

√
1 + (y′)2

c(y)
− y′ y′

c(y)
√

1 + (y′)2

=
1 + (y′)2

c(y)
√

1 + (y′)2
− (y′)2

c(y)
√

1 + (y′)2

=
1

c(y)
√

1 + (y′)2

4 Hamilton’s Principle for Conservative Mechanics

A path of a (system of) particle(s) is a path in a Euclidean space of some dimension (R,R2,R3,R3n, . . .)
depending on the number of particles and degrees of freedom.

Let x(t) be the path of a particle (or system). In 3-D, a particle has a mass m and determines a
kinetic energy 1

2m|ẋ|
2. For a system of masses mi, positions xi(t) then add together all the kinetic

energies for total kinetic energy:

T =
∑
i

1

2
mi|ẋi|2

If force F acting on a system of particles is conservative then:

F = −∇V

for some V which is a function of xi, called the potential energy of the system.

We can change variables to some conveniently chosen system of generalised unconstrained coordinates.
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Denote the generalised unconstrained coordinates by q1, q2, . . .. As the system moves the qi will be a
function of t. Using chain rule, T and V become functions of qi, q̇i:

T (q1, . . . , qn, q̇1, . . . , q̇n)

V (q1, . . . , qn)

L = T − V is a function of Lagrangian q1, . . . , qn, q̇1, . . . , q̇n.

Hamilton’s Principle: If a mechanical system evolves from position p1 at time t1 to position p2
at time t2 then amongst all paths joining p1 to p2 at times t1 and t2, the actual path is a critical point
of I(q1, . . . , qn) =

∫ t2
t1
Ldt.

5 Constraints and Lagrange Multipliers

If we want to find an extremum on a constrained set X = {(x, y) ∈ R2 : g(x, y) = 0} then the following
theorem is very important.

Theorem 5.1. Suppose f, g ∈ C1 are functions of two variables x, y and g is regular (i.e. ∇g 6= 0). If
(x0, y0) is an extremum of f on X = {(x, y) ∈ R2 : g(x, y) = 0} then there exists λ ∈ R such that f − λg
has an unconstrained critical point at (x0, y0).

Proof. Let f, g ∈ C1 and ∇g 6= 0 so without loss of generality assume ∂g
∂y 6= 0. Let (x0, y0) be an

extremum of f on X. By implicit function theorem there exists a function η(x) ∈ C1 defined near x0
with η(x0) = y0 such that y = η(x) for all (x, y) near (x0, y0), so for all (x, y) near (x0, y0) we have:

g(x, η(x)) = 0

We also have that f(x, y) = f(x, η(x)) near (x0, y0) so f(x, η(x)) has an extremum at x0 so:

d

dx
(f(x, η(x)))

∣∣∣∣
x=x0

= 0

Which is the same as:
∂f

dx
(x0, y0) +

∂f

∂y
(x0, y0) · dη

dx
(x0) = 0 (1)

As g(x, η(x)) = 0 for all x near x0 we have

d

dx
(g(x, η(x)))

∣∣∣∣
x=x0

= 0

Which is the same as:
∂g

dx
(x0, y0) +

∂g

∂y
(x0, y0) · dη

dx
(x0) = 0 (2)

As ∂g
∂y (x0, y0) 6= 0 by assumption, set:

λ :=

∂f
∂y (x0, y0)
∂g
∂y (x0, y0)

(3)

From equations (1), (2) and (3) we have:

∂f

dx
(x0, y0) = −∂f

∂y
(x0, y0) · dη

dx
(x0)

= −λ∂g
∂y

(x0, y0) · dη
dx

(x0)

= λ
∂g

dx
(x0, y0)
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Finally we have:

∇f(x0, y0) =

(
∂f

dx
(x0, y0),

∂f

∂y
(x0, y0)

)
=

(
λ
∂g

dx
(x0, y0), λ

∂g

∂y
(x0, y0)

)
= λ∇g(x0, y0)

Therefore we have ∇(f − λg)(x0, y0) = 0 and hence f − λg has a critical point at (x0, y0).

Remark 5.2. The three important equations you will need, to find an extremum (x0, y0) of f on
X = {(x, y) : g(x, y) = 0} are:

∂(f − λg)

∂x
(x0, y0) = 0

∂(f − λg)

∂y
(x0, y0) = 0

g(x0, y0) = 0

The above theorem can we extended to functions f, g of several variables.

Theorem 5.3. Suppose f, g ∈ C1 are functions of n variables x1, . . . , xn and g is regular (i.e. ∇g 6= 0).
Using the notation x = (x1, . . . , xn). If x0 is an extremum of f on X = {x ∈ Rn : g(x) = 0} then there
exists λ ∈ R such that f − λg has an unconstrained critical point at x0.

Theorem 5.4. Suppose y(x) ∈ C2, f, g ∈ C2 are functions of x, y, y′. If y(x) extremises I(y) =∫ x2

x1
f(x, y, y′)dx while J(y) =

∫ x2

x1
f(x, y, y′)dx = j0 where j0 ∈ R, then there exists λ ∈ R such that y(x)

is a critical point of I − λJ . Or in other words f − λg satisfies its Euler-Lagrange equation.

Proof. Suppose y is an extremum of I on the set of functions J(y) = j0. Let u, v ∈ C2 be functions of x
such that u(x1) = u(x2) = v(x1) = v(x2) = 0 and define:

Fu,v(h, k) := I(y + hu+ kv)

Gu,v(h, k) := J(y + hu+ kv)− j0

As y is an extremum of I on the set of functions J(y) = j0, (0, 0) is an extremum of Fu,v on the set of h, k
where Gu,v(h, k) = 0. Then there exists λu,v such that Fu,v−λGu,v has a critical point at (h, k) = (0, 0).
Therefore we get the following equations:

∂

∂h
(Fu,v − λu,vGu,v)(h, k)

∣∣∣∣
(h,k)=(0,0)

= 0

∂

∂k
(Fu,v − λu,vGu,v)(h, k)

∣∣∣∣
(h,k)=(0,0)

= 0

This means we get the following equations:

d

dh
(I(y + hu)− λu,vJ(y + hu))

∣∣∣∣
h=0

= 0

d

dk
(I(y + kv)− λu,vJ(y + kv))

∣∣∣∣
k=0

= 0

Therefore y satisfies the following equations:∫ x2

x1

u

(
∂(f − λu,vg)

∂y
− d

dx

(
∂(f − λu,vg)

∂y′

))
dx = 0 (4)∫ x2

x1

v

(
∂(f − λu,vg)

∂y
− d

dx

(
∂(f − λu,vg)

∂y′

))
dx = 0 (5)
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From equation (4) we get:∫ x2

x1

u

(
∂f

∂y
− d

dx

(
∂f

∂y′

))
dx = λu,v

∫ x2

x1

u

(
∂g

∂y
− d

dx

(
∂g

∂y′

))
dx

Pick u0 such that
∫ x2

x1
u0

(
∂g
∂y −

d
dx

(
∂g
∂y′

))
dx 6= 0. Then:

λu0,v =

∫ x2

x1
u0

(
∂f
∂y −

d
dx

(
∂f
∂y′

))
dx∫ x2

x1
u0

(
∂g
∂y −

d
dx

(
∂g
∂y′

))
dx

(6)

As the right hand side of equation (6) is independent of v, we can write λu0,v = λ. Then for all v ∈ C2

such that v(x1) = v(x2) = 0 we have:∫ x2

x1

v

(
∂(f − λg)

∂y
− d

dx

(
∂(f − λg)

∂y′

))
dx

Then by the Fundamental Theorem of Calculus of Variations we get f − λg satisfies its Euler-Lagrange
equation and hence y is a critical point of I − λJ .


